

Руководство по эксплуатации

Универсальный генератор сигналов/ сигналов произвольной формы

UDG101/1

UDG101/2

UDG101/3

UDG101/4

UDG101/5

Версия август 2014

Авторское право © ООО "ЮнионТЕСТ". Все права защищены.

Union — зарегистрированная торговая марка ООО "ЮнионТЕСТ"

Вся информация этого руководства защищена авторским правом. Любое копирование, тиражирование, полное или частичное воспроизведение, а также перевод на другой язык запрещены без официального разрешения ООО "ЮнионТЕСТ".

Информация в этом руководстве по эксплуатации считается верной на момент публикации. Однако ООО "ЮнионТЕСТ" оставляет за собой право любых изменений данного руководства по эксплуатации полностью или частично в любое время и без уведомления.

Информация для контакта

ООО "ЮнионТЕСТ", Россия Тел. +7 (499) 1748035, +7 (915) 0554563

Факс. +7 (499) 1748035

Адрес электронной почты: utest.ru@gmail.com

Веб-страница: www.utest.ru

СОДЕРЖАНИЕ

Требования безопасности	4
Эбщее описание	8
Глава 1 Быстрое обучение	11
Начальная проверка	12
Регулировка положения ручки прибора	13
Передняя панель/задняя панель	14
Выбор формы сигнала	18
Режим модуляции/ свип-генератора /генерации пачки	24
Управление выходами	27
Выбор меню канала	27
Средства ввода числовых значений	28
Функции сохранение/утилиты/помощь	29
Глава 2 Работа с генератором	31
Получение сигнала синусоидальной формы	32
Получение сигнала прямоугольной формы	38
Получение сигнала пилообразной формы	41
Получение сигнала импульсной формы	44
Получение сигнала шума	47
Получение сигнала произвольной формы	48
Получение модулированного сигнала	55
Получение сигнала свип-генератора	68
Генерация пачки	71
Сохранение и загрузка	76
Меню утилит	82
Использование встроенной системы помощи	99
Глава 3 Примеры применения	100
Пример 1 Генерирование синусоидального сигнала	101
Пример 2 Генерирование прямоугольных импульсов	102

Пример 3 Генерирование пилообразного сигнала	104
Пример 4 Генерирование импульсного сигнала	106
Пример 5 Генерирование белого шума	108
Пример 6 Генерирование сигнала произвольной формы	110
Пример 7 Получение сигнала свип-генератора	112
Пример 8 Получение сигнала пачки с заданным числом	
периодов	114
Пример 9 Получение сигнала амплитудной модуляции (АМ)	117
Пример 10 Получение сигнала частотной манипуляции (FSK).	119
⁻ лава 4 Устранение неполадок	. 121
¬лава 5 Приложения	. 122
Приложение А. Стандартный комплект поставки и	
дополнительное оборудование	122
Приложение Б. Характеристики	123
Приложение В. Техническое обслуживание	130
Приложение Г. Гарантийные обязательства и обслуживание	131
Гарантийные обязательства	131

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Общие меры предосторожности

Во избежание получения травм, повреждения данного прибора или других приборов электрически связанных с ним, перед тем как приступить к работе внимательно ознакомьтесь с требованиями безопасности. Во избежание потенциальной опасности используйте прибор только как указано в данном руководстве.

Обслуживание и ремонт прибора должен осуществлять только квалифицированный специалист

Используйте надлежащий кабель питания

Подключайте прибор к электросети только кабелем питания, предназначенным для данного прибора и страны его использования.

Проверьте заземление прибора

Данный прибор заземлен через провод защитного заземления кабеля питания. Во избежание электрошока этот провод кабеля питания обязательно должен быть подключен к заземлению. Убедитесь, что прибор должным образом заземлен перед подключением входов или выходов данного прибора.

Учитывайте все предельные характеристики входов и выходов

Во избежание возгорания или электрошока перед подключением изучите все предельные характеристики и маркировки на приборе, для получения большей информации обратитесь к руководству по эксплуатации.

Используйте надлежащую защиту от перенапряжения

Убедитесь, что перенапряжение ни в коем случае не сможет достигнуть прибора (например, при грозе). В противном случае возможен электрошок.

Замена плавкого предохранителя

Перед заменой устраните причину его перегорания. Выключите прибор и отключите его от электросети.

Не работайте с прибором без крышек корпуса

Не допускается использовать прибор без крышек или панелей корпуса.

Остерегайтесь открытых цепей и проводников

Не допускается при включенном питании прибора касаться открытых цепей и проводников.

He допускается эксплуатация прибора при сомнении в его исправности

При сомнении в исправности прибора перед его дальнейшей эксплуатацией необходимо выполнить его проверку квалифицированным обслуживающим персоналом. Любой ремонт, регулировка или особенно замена частей прибора должны выполняться уполномоченным ООО "ЮнионТЕСТ" персоналом.

Обеспечьте хорошую вентиляцию

Недостаточная вентиляция может вызвать перегрев или повреждение этого прибора. Обеспечьте хорошую вентиляцию и регулярно осматривайте вентиляционные отверстия прибора.

Не допускается использование прибора в условиях повышенной влажности

Во избежание короткого замыкания внутри прибора или электрошока не допускается использование прибора в условиях повышенной влажности.

Не допускается использование во взрывоопасной атмосфере

Помните, во избежание повреждения прибора или травм не допускается использование прибора в условиях повышенной взрывоопасности.

Поверхность прибора должна быть чистой и сухой

Поддерживайте поверхность прибора чистой и сухой, оберегая его от воздействия пыли и/или влажности.

Защита от электростатики

Рабочее место должно быть оборудовано специальными средствами для снятия электростатического заряда во избежание повреждения в результате электростатического разряда. Перед подключением кабеля обязательно на некоторое время заземлите внутренний и внешний его проводники для снятия электростатического заряда.

Будьте осторожны при транспортировке

Будьте осторожны при транспортировке во избежание повреждения органов управления, дисплея, разъемов и прочих частей на панелях прибора.

Предупреждающие надписи и символы

Предупреждающие надписи в данном руководстве. В данном руководстве можно встретить следующие предупреждающие надписи:

осторожно!

указывает на условия или действия, приводящие к травмам или даже летальному исходу.

ВНИМАНИЕ!

указывает на условия или действия, в результате которых может быть поврежден этот прибор или другое оборудование.

Предупреждающие надписи на приборе. На приборе можно встретить следующие предупреждающие надписи:

DANGER (OПACHO!)

указывает на непосредственную

опасность получения травмы.

WARNING (ОСТОРОЖНО!) указывает

на

потенциальную опасность получения травмы.

CAUTION (BHUMAHUE!)

указывает на потенциальную опасность повреждения прибора или

другого оборудования.

Предупреждающие символы на приборе. На приборе можно встретить следующие предупреждающие символы:

Опасное напряжение

Обратитесь к руководству по эксплуатации

Вывод защитного заземления Вывод шасси прибора

Вывод заземления

ОБЩЕЕ ОПИСАНИЕ

Использование в генераторах серии UDG101 технологии прямого синтеза (DDS) позволяет получать устойчивый. цифрового точный чистый сигнал С низким уровнем искажений. Превосходные технические характеристики. простота управления и широкий набор функций делают эти приборы превосходным решением обеспечения ваших задач в настоящее время и в будущем.

Генераторы серии UDG101 имеют простую и понятную переднюю Дружественный интерфейс панель. И продуманное расположение органов управления на передней панели, разнообразие коммутационных графический разъемов, интерфейс позволят исключительно быстро обучить оператора умелому обращению с прибором. Режимы модуляции АМ, DSB-AM. FM. PM. ASK. FSK и PWM позволят получить без модулированный сигнал помощи дополнительного модулирующего источника. Кроме того, прибор имеет порт USB в стандартном комплекте поставки, возможна поставка прибора с порта GPIB. Дистанционное *управление* адаптером ДЛЯ осуществляется командами стандарта SCPI.

Основные особенности

- Технология прямого цифрового синтеза (DDS) обеспечивает устойчивый, точный и чистый выходной сигнал с низким уровнем искажений.
- Цветной ТГТ ЖК-дисплей 3.5 дюйма.

- Частота дискретизации 125 МГц, вертикальное разрешение – 14 бит.
- Частотные характеристики:
 - синусоидальный сигнал: от 1 мкГн до максимальной частоты 5/10/20/25/50 МГц в зависимости от модели (см. раздел "Частотные характеристики" в "Приложение Б. Характеристики");
 - прямоугольный сигнал: от 1 мкГн до максимальной частоты 5/10/20/25/25 МГц в зависимости от модели (см. раздел "Частотные характеристики" в "Приложение Б. Характеристики");
 - пилообразный сигнал: от 1 мкГц до 300 кГц;
 - импульсный сигнал: от 500 мкГц до 5 МГц;
 - белый шум: полоса 5/10/20/25/50 МГц (-3 дБ) в зависимости от модели (см. раздел "Частотные характеристики" в "Приложение Б. Характеристики");
 - сигнал произвольной формы: от 1 мкГц до 5 МГц.
- 5 стандартных форм сигнала: синус, прямоугольный, пилообразный, импульсный, шум
- Разнообразие видов аналоговой и цифровой модуляции: АМ, DSB-AM, FM, PM, ASK, FSK и PWM.
- Функции свип-генератора и генерации пачки.
- Разнообразие входов/выходов: выход основного сигнала, вход внешнего модулирующего сигнала, вход внешнего опорного сигнала 10 МГц, вход внешнего сигнала запуска, выход сигнала синхронизации.
- Поддержка внешнего USB флеш-накопителя; возможность обновления прошивки внутренней программного обеспечения генератора с внешнего USB флеш-накопителя.

- Возможность получения на выходе прибора сигнала произвольной формы до 16 тыс. точек с использованием внутренней памяти генератора и редактирования сигнала произвольной формы с помощью программы EasyWave.
- Дистанционное управление генератором через USB.
- Разнообразие интерфейсов: USB-хост и USB-прибор, GPIB (IEEE-488) (опция).
- Выбор языка для интерфейса прибора и встроенной системы помощи: китайский или английский.

Замечание

Для ознакомления с остальными характеристиками обратитесь к разделу " Приложение Б. Характеристики".

ГЛАВА 1 БЫСТРОЕ ОБУЧЕНИЕ

Темы этой главы:

- начальная проверка;
- регулировка положения ручки прибора;
- передняя панель/задняя панель;
- выбор формы сигнала;
- режимы модуляции/свип-генератора/генерации пачки;
- управление выходами;
- средства ввода числовых значений;
- функции сохранение/ утилиты/ помощь.

Начальная проверка

При получении нового генератора следует выполнить его проверку согласно следующему.

1. Проверьте отсутствие повреждения транспортной упаковки

Сохраните поврежденную упаковку или упаковочный материал до полной механической, электрической проверки и проверки соответствия комплекта поставки.

2. Проверьте принадлежности

При обнаружении недостачи в комплекте поставки (см. разделу "Приложение А. Стандартный комплект поставки и дополнительное оборудование") или повреждения, уведомьте об этом Вашего поставщика.

3. Проверьте прибор

При обнаружении любого механического повреждения или дефекта прибора, а также при выявлении неполадок в его работе уведомьте об этом Вашего поставщика. При механическом повреждении упаковки или упаковочного материала уведомьте об этом Вашу транспортную компанию. Сохраните поврежденную упаковку или упаковочный материал для экспертизы транспортной компанией.

Регулировка положения ручки прибора

Для регулировки положения ручки прибора потяните за нее в местах ее крепления в осевом направлении от прибора, а затем поверните ручку в нужное положение, как показано на следующих рисунках.

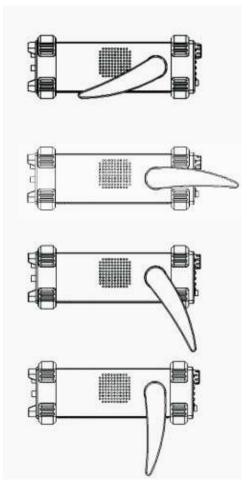


Рисунок 1-1 Регулировка положения ручки генератора

Передняя панель/задняя панель

Знакомство с любым новым прибором следует начинать с элементов управления передней и задней панели. Эта глава дает краткое описание элементов управления, расположенных на передней и задней панели.

Эти генераторы имеют простую и понятную переднюю панель (см. рис. 1-2 и 1-3).

Ha передней панели генератора находятся поворотный регулятор и функциональные кнопки. Пять серо-голубых кнопок у правой стороны экрана являются кнопками меню, с помощью меню разных функций которых онжом вызывать или непосредственно выполнять конкретные действия.

На передней панели и задней панелях генератора находятся разъемы входов и выходов сигналов, позволяющие получить сигнал нужной формы, а также обеспечивающие разнообразные интерфейсы, удовлетворяющие потребности коммуникации.

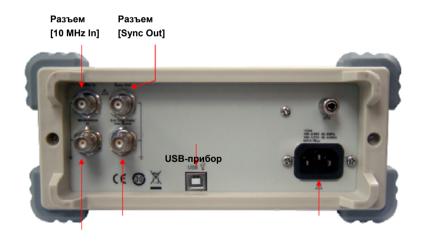


Рисунок 1-2 Внешний вид генератора

Рисунок 1-3 Передняя панель

Разъем [Ext Trig/Gate/ Разъем FSK/Burst] [Modulation In]

Разъем кабеля питания

Рисунок 1-4 Задняя панель

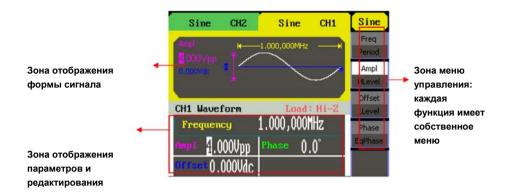


Рисунок 1-5 Экранный интерфейс (для примера показан экранный интерфейс синусоидального сигнала)

В тексте данного руководства принято следующее обозначения

1. Кнопки, расположенные на передней панели прибора Кнопки функций, расположенные на передней панели прибора, обозначаются как наименование кнопки жирным шрифтом + рамка вокруг текста, например, Sine.

2. Кнопки меню

Кнопки меню обозначаются как наименование кнопки жирным шрифтом + серый фон, например, **Freq**.

3. Разъемы

Разъемы, расположенные на передней или задней панели прибора, обозначаются как наименование кнопки жирным шрифтом + квадратные скобки, например, [Sync Out].

4. Последовательность действий пользователя

Последовательность действий пользователя в данном руководстве обозначается с помощью символа "→". Например, Sine → Freq означает, что следует нажать кнопку Sine на передней панели и затем нажать кнопку, соответствующую пункту экранного меню Freq.

\wedge

ВНИМАНИЕ!

Подача сигнала на разъемы прибора, работающие в режиме выхода недопустима. Это может повредить генератор.

Выбор формы сигнала

На панели управления имеется набор кнопок с изображением формы сигнала (см. рисунок 1-6). Последующее описание поможет Вам ознакомиться с параметрами настройки форм сигнала.

Рисунок 1-6 Кнопки выбора формы сигнала

1. Нажмите кнопку |Sine|, и в зоне отображения формы сигнала появится изображение синуса. Генератор позволяет получать 1 мкГн синусоидальный сигнал С частотой OT ДО максимальной частоты 5/10/20/25/50 МГц в зависимости от модели (CM. раздел "Частотные характеристики" "Приложение Б. Характеристики"). Установка параметров частота/период (Freq/Period), амплитуда/верхний уровень (Ampl/HLevel), смещение/нижний уровень (Offset/LLevel) и фаза (Phase) позволяет получить сигнал синуса с нужными параметрами.

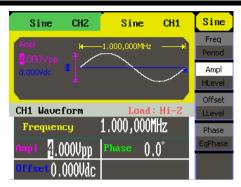


Рисунок 1-7 Вид интерфейса для синусоидального сигнала На рис. 1-7 показаны начальные настройки изготовителя: частота — 1 кГц, амплитуда — 4.0 $B_{\text{размах}}$ и смещение — 0 $B_{\text{постоянное}}$, фаза — 0°.

2. Нажмите кнопку **Square**, и в зоне отображения формы сигнала появится изображение прямоугольного сигнала. Генератор позволяет получать прямоугольный сигнал с регулируемым коэффициентом заполнения и частотой от 1 мкГн до максимальной частоты 5/10/20/25/25 МГц зависимости модели (см. раздел "Частотные OT характеристики" в "Приложение Б. Характеристики"). частота/период (Freg/Period). Установка параметров (Ampl/HLevel), амплитуда/верхний уровень смещение/нижний уровень (Offset/LLevel), коэффициент заполнения (Duty) и фаза (Phase) позволяет получить прямоугольный сигнал с нужными параметрами.

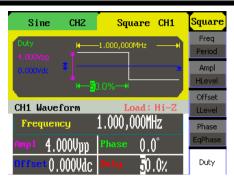


Рисунок 1-8 Вид интерфейса для прямоугольного сигнала На рис. 1-8 показаны начальные настройки изготовителя: частота — 1 к Γ ц, амплитуда — 4.0 Bразмах и смещение — 0 Bлостоянное, коэффициент заполнения — 50 %, фаза — 0°.

3. Нажмите кнопку Ramp, и в зоне отображения формы сигнала появится изображение сигнала пилообразной формы. Генератор позволяет получать пилообразный сигнал с регулируемым коэффициентом симметрии и частотой от 1 мкГн до 5 МГц. Установка параметров частота/период (Freq/Period), амплитуда/верхний уровень (Ampl/HLevel), смещение/нижний уровень (Offset/LLevel), коэффициент симметрии (Symmetry) и фаза (Phase) для получения сигнала пилообразной формы с нужными параметрами.

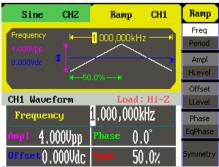


Рисунок 1-9 Вид интерфейса для пилообразного сигнала

На рис. 1-9 показаны начальные настройки изготовителя: частота — 1 кГц, амплитуда — 4.0 $B_{\text{размах}}$ и смещение — 0 $B_{\text{постоянное}}$, коэффициент симметрии — 50 %, фаза — 0°.

4. Нажмите кнопку **Pulse**, и в зоне отображения формы сигнала появится изображение импульсного сигнала. позволяет получать импульсный сигнал с регулируемым коэффициентом заполнения и частотой от 1 мкГн до 300 кГц. Установка параметров частота/период (Freg/Period). (Ampl/HLevel), амплитуда/верхний уровень смещение/нижний уровень (Offset/LLevel). длительность (PulWidth/Duty) импульса/коэффициент заполнения задержка (Delay) для получения импульсного сигнала с нужными параметрами.

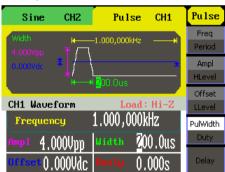


Рисунок 1-10 Вид интерфейса для импульсного сигнала На рис. 1-10 показаны начальные настройки изготовителя: частота — 1 кГц, амплитуда — 4.0 В_{размах} и смещение — 0 В_{постоянное}, длительность импульса — 200 мкс, задержка — 0 с.

5. Нажмите кнопку **Noise**, и в зоне отображения формы сигнала появится изображение шумового сигнала. Генератор позволяет получать сигнал белого шума с полосой

5/10/20/25/50 МГц (-3 дБ) в зависимости от модели (см. раздел "Частотные характеристики" в "Приложение Б. Характеристики"). Установка параметров амплитуда (Variance), смещение (Mean) для получения шумового сигнала с нужными параметрами.

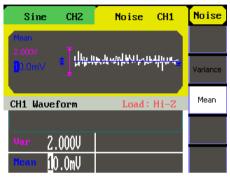


Рисунок 1-11 Вид интерфейса для шумового сигнала На рис. 1-11 показаны начальные настройки изготовителя: макс. амплитуда – 2.0 В, смещение – 10 мВ.

6. Нажмите кнопку Arb, и в зоне отображения формы сигнала появится изображение сигнала произвольной формы. Генератор позволяет получать сигнал произвольной формы из 16 тыс. точек и частотой до 5 МГц. Установите нужную частоту/период (Freq/Period), амплитуду/верхний уровень (Ampl/HLevel), смещение/нижний уровень (Offset/LLevel) и фазу (Phase) для получения сигнала произвольной формы с требуемыми параметрами.

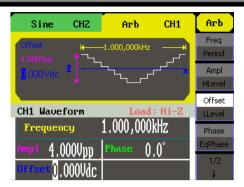


Рисунок 1-12 Вид интерфейса для сигнала произвольной формы На рис. 1-12 показаны начальные настройки изготовителя: частота — 1 кГц, амплитуда — 4.0 $B_{\text{размах}}$ и смещение — 0 $B_{\text{постоянное}}$, фаза — 0°.

Режим модуляции/ свип-генератора /генерации пачки

Ha передней панели генератора имеется три кнопки, выбора модуляции, предназначенные ДЛЯ режима свип-генератора И генерации пачки. а также вызова соответствующего меню настройки (см. рис. 1-13). Приведенное ниже описание ознакомит с их использованием.

Рисунок 1-13 Кнопки выбора режима модуляции, свип-генератора и генерации пачки

Mod прибор 1. Нажатие кнопки переключает режим генерирования модулированного сигнала. Модулированный ОНЖОМ настраивать изменением сигнал следующих параметров: функция модуляции (Туре), форма сигнала несущей (Shape), частота несущей (Freq), коэффициент (Depth). модуляции источник модулирующего (Source). Генератор серии UDG101 обеспечивает следующие амплитудная (AM), модуляции: модуляция виды двухсторонняя амплитудная модуляция (DSB-AM), частотная модуляция (FM), фазовая модуляция (РМ), амплитудная манипуляция (ASK). частотная манипуляция широтно-импульсная модуляция (PWM), используя в качестве сигнала несущей: синусоидальный, прямоугольный, пилообразный сигнал, а также сигнал произвольной формы. (Pulse) Импульсный сигнал ШУМ И не МОГУТ использованы в качестве несущей, а широтно-импульсная

модуляция (PWM) доступна только при выборе импульсного сигнала (**Pulse**).

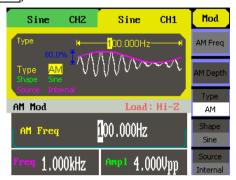


Рисунок 1-14 Вид интерфейса для режима модуляции

Sweep 2. Нажатие переключает кнопки прибор в свип-генератора. В режиме свип-генератора производится изменение частоты выходного сигнала от начального до конечного значения в течение заданного времени развертки. режиме свип-генератора ΜΟΓΥΤ быть использованы синусоидальный, прямоугольный, пилообразный сигнал, а сигнал произвольной формы. Импульсный сигнал и шум не могут быть использованы в режиме (Pulse) свип-генератора.

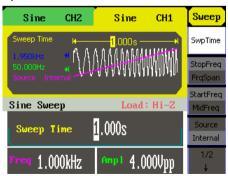


Рисунок 1-15 Вид интерфейса для режима свип-генератора

3. Нажатие кнопки **Burst** переключает прибор в режим генерации пачки. Прибор позволяет генерировать пачки из сигнала следующих форм: синусоидальный, прямоугольный, пилообразный, импульсный и сигнал произвольной формы.

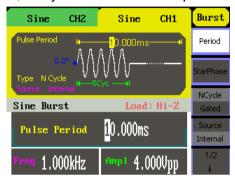


Рисунок 1-16 Вид интерфейса для режима генерации пачки

Пояснение

Генерация пачки — это получение заданного числа периодов сигнала определенной формы.

Генерация пачки может быть двух типов: пачки с заданным количеством циклов (**NCycle**) и стробированные пачки (**Gated**).

В качестве формы сигнала для генерации пачки может быть использована любая из предлагаемых генератором форм. Однако шумовой сигнал может быть использован только для генерации стробированных пачек (**Gated**).

Обычно режим генерации пачки включают после получения на выходе генератора базового сигнала нужной формы.

Управление выходами

Справа на передней панели генератора имеется две кнопки для управления выходом (см. рис. 1-17). Приведенное ниже описание ознакомит с их использованием.

Рисунок 1-17 Кнопки управления выходом каналов

1. Управление выходами каналов

С помощью кнопок **Output** можно включить или отключить выход соответствующего канала СН1 или СН2.

2. Вход частотомера

При использовании режима частотомера выходной разъем канала CH2 используется как вход для измеряемого сигнала. При этом отключение выхода канала CH2 генератора производится автоматически.

Выбор меню канала

У правой стороны экрана над кнопками меню имеется кнопка СН1/2, предназначенная для выбора текущего меню и отображаемой информации канала СН1 или СН2 (см. рис. 1-18).

Рисунок 1-18 Кнопка выбора меню и отображаемой информации канала CH1 или CH2

Средства ввода числовых значений

Справа на передней панели генератора имеются еще две группы кнопок: цифровая клавиатура и кнопки направлений, а также поворотный регулятор (см. рис. 1-19). Приведенное ниже описание ознакомит с их использованием.

Рисунок 1-19 Органы управления, используемые для ввода числовых значений

Кнопки направлений

Кнопки "ВВЕРХ" и "ВНИЗ" позволяют перемещаться по меню для выбора параметра, а с помощью кнопок "ВПРАВО" и "ВЛЕВО" можно выбрать разряд в числовом значении выбранного параметра.

Цифровая клавиатура

Позволяет непосредственно вводить нужное числовое значение для выбранного параметра.

Поворотный регулятор

Вращение этого регулятора по часовой стрелке увеличивает числовое значение для выбранного параметра, против часовой

стрелки - уменьшает.

Ввод числового значения параметра

Ввод числового значения параметра может быть выполнен следующими двумя способами.

- 1. Числовое значение любого параметра можно непосредственно ввести с помощью цифровой клавиатуры, а затем завершить ввод выбором нужной единицы величины, нажав соответствующую кнопку меню.
- 2. С помощью кнопок направления выберите нужный разряд значения, а затем установите нужное значение с помощью поворотного регулятора.

Функции сохранение/утилиты/помощь

На передней панели генератора имеется три кнопки, предназначенные для вызова меню функций сохранения/загрузки, меню утилит и меню информационной помощи (см. рис. 1-19). Приведенное ниже описание ознакомит с их использованием.

Рисунок 1-19 Кнопки функций сохранения/загрузки, меню утилит и контекстной помощи

- 1. Кнопка **Store/Recall** используется для сохранения и загрузки данных сигнала произвольной формы или настроек генератора.
- 2. Кнопка **Utility** используется для вызова меню вспомогательных функций системы, изменения параметров

настройки выхода, настроек интерфейса, информации о настройках системы, а также для проведения самодиагностики прибора и информации о калибровки и т.п.

3. Кнопка **Help** служит для вызова меню информационной помощи.

ГЛАВА 2 РАБОТА С ГЕНЕРАТОРОМ

Приступая к изучению этой главы, следует иметь представление об устройстве передней/задней панели, о расположении и назначении всех элементов управления данного генератора, о принципе настройки генератора. В противном случае следует обратиться к разделу "Глава 1 Быстрое обучение".

Темы этой главы:

- получение сигнала синусоидальной формы (Sine);
- получение сигнала прямоугольной формы (Square);
- получение сигнала пилообразной формы (Ramp);
- получение сигнала импульсной формы (Pulse);
- получение сигнала шума (Noise);
- получение сигнала произвольной формы (Arb);
- получение модулированного сигнала (Mod);
- получение сигнала свип-генератора (Sweep);
- генерация пачки (**Burst**);
- сохранение и загрузка (Store/Recall);
- меню утилит (Utility);
- система информационной помощи (Help).

Рекомендуем тщательно изучить эту главу для полного понимания методов настройки и управления генератором.

Получение сигнала синусоидальной формы

Нажмите кнопку **Sine** для выбора синусоидальной формы сигнала и вызова меню его настроек.

Для получения разных сигналов синусоидальной формы генератор позволяет задавать следующие параметры: (Freg/Period), частота/период амплитуда/верхний уровень (Ampl/HLevel), смещение/нижний уровень (Offset/LLevel) и фаза (**Phase**). Например, с помощью соответствующей кнопки меню выберите Freq, как показано на рис. 2-1. При этом курсор будет находиться на значении частоты в зоне отображения параметров и можно будет установить нужное значение частоты. Изменение немедленно отразится на выходном сигнале.

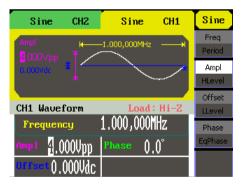


Рисунок 2-1 Меню настроек сигнала синусоидальной формы

Рисунок 2-2

Таблица 2-1 Меню настроек сигнала синусоидальной формы

Меню	Настройки	Комментарии
		Установка частоты или
Freq/ Period		периода сигнала; текущий
		параметр возвращается
		повторным нажатием кнопки.
Ampl/ HLevel		Установка амплитуды или
		верхнего уровня сигнала;
		текущий параметр
		возвращается повторным
		нажатием кнопки.
		Установка смещения и нижнего
Offset/		уровня сигнала; текущий
LLevel		параметр возвращается
		повторным нажатием кнопки.
		Установка начальной фазы
		сигнала; текущий параметр
		возвращается повторным
		нажатием кнопки.
		Выбор EqPhase осуществляет
Phase/		выравнивание фазы сигналов
EqPhase		каналов СН1 и СН2 в
		двухканальном режиме. При
		этом вместо числового
		значения фазы канала
		отображается индикатор
		EqPhase

Установка частоты/периода выходного сигнала

1. Нажмите **Sine** → **Freq** для установки частоты сигнала.

Значение частоты, отображаемое на экране после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение частоты недопустимо, то оно будет автоматически скорректировано.

При необходимости установки периода сигнала следует еще раз нажать соответствующую кнопку меню **Freq/Period** (текущий параметр отображается в инверсном цвете).

2. Введите нужное значение частоты (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

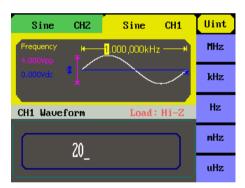


Рисунок 2-3 Установка частоты

Замечание

При вводе значения с помощью цифровой клавиатуры используйте кнопку направления "ВЛЕВО" для перемещения курсора и удаления или изменения предыдущего разряда.

Установка амплитуды выходного сигнала

- 1. Нажмите Sine → Ampl для установки амплитуды сигнала. отображаемое Значение амплитуды. на экране после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение амплитуды недопустимо, то оно будет автоматически скорректировано. При необходимости установки верхнего или нижнего уровня сигнала следует нажать соответствующую кнопку меню Ampl/HLevel Offset/LLevel (текущий или параметр отображается в инверсном цвете).
- 2. Введите нужное значение амплитуды (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

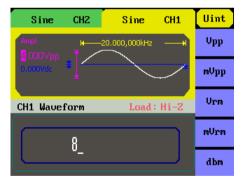


Рисунок 2-4 Установка амплитуды

Установка смещения постоянной составляющей

1. Нажмите **Sine** → **Offset** для установки смещения.

Значение смещения, отображаемое на экране после включения прибора, либо является значением по умолчанию,

либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение смещения станет недопустимым, то оно будет автоматически скорректировано.

2. Введите нужное значение смещения (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

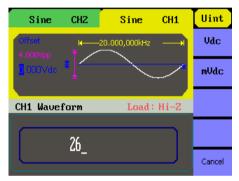


Рисунок 2-5 Установка смещения

Установка начальной фазы выходного сигнала

Нажмите Sine → Phase для установки начальной фазы выходного сигнала.

Значение начальной фазы выходного сигнала, отображаемое на экране после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение начальной фазы выходного сигнала станет недопустимым, то оно будет автоматически скорректировано.

2. Введите нужное значение начальной фазы выходного сигнала (см. раздел "Средства ввода числовых значений").

Изменение немедленно отразится на выходном сигнале.

Замечание

Настройки параметров *частота, амплитуда, смещение* и *фаза* для любой формы сигнала выполняются также как и для синусоидальной формы, поэтому эта тема далее не будет затрагиваться.

Получение сигнала прямоугольной формы

Нажмите кнопку **Square** для выбора прямоугольной формы сигнала и вызова меню его настроек.

Для получения разных сигналов прямоугольной формы генератор позволяет задавать следующие параметры: (Freg/Period). частота/период амплитуда/верхний **уровень** (Offset/LLevel), (Ampl/HLevel). смещение/нижний уровень коэффициент заполнения (**Duty**) и фаза (**Phase**).

Как показано на рис. 2-6, с помощью соответствующей кнопки меню выберите **Duty**. При этом курсор будет находиться на значении коэффициента заполнения в зоне отображения параметров и можно будет установить для него нужное значение.

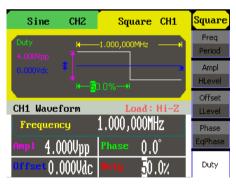


Рисунок 2-6 Меню настроек сигнала прямоугольной формы

Рисунок 2-7

Freq
Period

Ampl
HLevel

Offset
LLevel
Phase
EqPhase

Таблица 2-2 Меню настроек сигнала прямоугольной формы

Меню	Настройки	Комментарии
		Установка частоты или
Freq/		периода сигнала; текущий
Period		параметр возвращается
		повторным нажатием кнопки.
		Установка амплитуды или
Ampl/		верхнего уровня сигнала;
HLevel		текущий параметр
IILEVEI		возвращается повторным
		нажатием кнопки.
		Установка смещения и нижнего
Offset/		уровня сигнала; текущий
LLevel	LLevel	параметр возвращается
		повторным нажатием кнопки.
		Установка начальной фазы
		сигнала; текущий параметр
		возвращается повторным
		нажатием кнопки.
		Выбор EqPhase осуществляет
Phase/		выравнивание фазы сигналов
EqPhase		каналов СН1 и СН2 в
		двухканальном режиме. При
		этом вместо числового
		значения фазы канала
		отображается индикатор
		EqPhase.
Duty		Установка коэффициента
Duty		заполнения периода

Коэффициент заполнения – отношение длительности импульса к периоду в процентах.

Частота Коэффициент заполнения

до 10 МГц от 20 до 80 % от 10 до 20 МГц (включительно) от 40 до 60 %

свыше 20 МГц 50 %

Установка коэффициента заполнения периода

 Нажмите Square → Duty для установки коэффициента заполнения периода.

Значение коэффициента заполнения, отображаемое на экране после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение коэффициента заполнения станет недопустимым, то оно будет автоматически скорректировано.

2. Введите нужное значение коэффициента заполнения (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

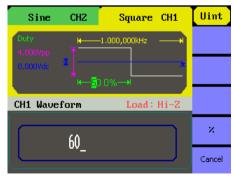


Рисунок 2-8 Установка коэффициента заполнения

Получение сигнала пилообразной формы

Нажмите кнопку **Ramp** для выбора пилообразной формы сигнала и вызова меню его настроек.

Для получения разных сигналов пилообразной формы генератор позволяет задавать следующие параметры: частота/период (Freq/Period), амплитуда/верхний уровень (Ampl/HLevel), смещение/нижний уровень (Offset/LLevel), коэффициент симметрии (Symmetry) и фаза (Phase).

Как показано на рис. 2-9, с помощью соответствующей кнопки меню выберите **Symmetry**. При этом курсор будет находиться на значении коэффициента симметрии в зоне отображения параметров и можно будет установить для него нужное значение.

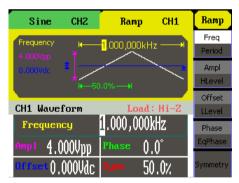


Рисунок 2-9 Меню настроек сигнала пилообразной формы

Рисунок 2-10

Таблица 2-3 Меню настроек сигнала пилообразной формы

Меню	Настройки	Комментарии
		Установка частоты или
Freq/		периода сигнала; текущий
Period		параметр возвращается
		повторным нажатием кнопки.
		Установка амплитуды или
Ampl/		верхнего уровня сигнала;
HLevel		текущий параметр
IILEVEI		возвращается повторным
		нажатием кнопки.
		Установка смещения и нижнего
Offset/		уровня сигнала; текущий
LLevel	LLevel	параметр возвращается
		повторным нажатием кнопки.
		Установка начальной фазы
		сигнала; текущий параметр
		возвращается повторным
		нажатием кнопки.
		Выбор EqPhase осуществляет
Phase/		выравнивание фазы сигналов
EqPhase		каналов СН1 и СН2 в
		двухканальном режиме. При
		этом вместо числового
		значения фазы канала
		отображается индикатор
		EqPhase.
Symmetry		Установка коэффициента
3,iou y		симметрии

Коэффициент симметрии – отношение длительности фронта сигнала к периоду в процентах.

Диапазон ввода: 0~100 %

Установка коэффициента симметрии

Нажмите Ramp → Symmetry для установки коэффициента симметрии.

Значение коэффициента симметрии, отображаемое на экране после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение коэффициента симметрии станет недопустимым, то оно будет автоматически скорректировано.

2. Введите нужное значение коэффициента заполнения (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

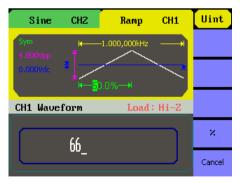


Рисунок 2-11 Установка коэффициента симметрии

Получение сигнала импульсной формы

Нажмите кнопку **Pulse** для выбора импульсной формы сигнала и вызова меню его настроек.

Для получения разных сигналов импульсной формы генератор позволяет задавать следующие параметры: частота/период (Freq/Period), амплитуда/верхний уровень (Ampl/HLevel), смещение/нижний уровень (Offset/LLevel), длительность импульса/коэффициент заполнения (PulWidth/Duty) и задержки (Delay).

Как показано на рис. 2-12, с помощью соответствующей кнопки меню выберите **PulWidth**. При этом курсор будет находиться на значении длительности импульса в зоне отображения параметров и можно будет установить для нее нужное значение.

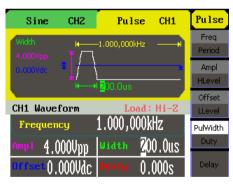


Рисунок 2-12 Меню настроек сигнала импульсной формы

Рисунок 2-13

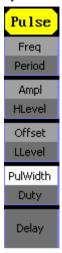


Таблица 2-4 Меню настроек сигнала импульсной формы

Меню	Настройки	Комментарии
		Установка частоты или
Freq/		периода сигнала; текущий
Period		параметр возвращается
		повторным нажатием кнопки.
		Установка амплитуды или
Ampl/		верхнего уровня сигнала;
HLevel		текущий параметр
nLevel		возвращается повторным
		нажатием кнопки.
		Установка смещения и нижнего
Offset/		уровня сигнала; текущий
LLevel		параметр возвращается
		повторным нажатием кнопки.
		Установка длительности
PulWidth/		импульса или коэффициента
Duty		заполнения периода; текущий
		параметр возвращается
		повторным нажатием кнопки.
Delay		Установка задержки

Длительность импульса — время по уровню 50 % амплитуды импульса между его фронтом и срезом.

Установка длительности импульса

Нажмите Pulse → PulWidth для установки длительности импульса.

Значение длительности импульса, отображаемое на экране

после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение длительности импульса станет недопустимым, то оно будет автоматически скорректировано.

2. Введите нужное значение длительности импульса (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

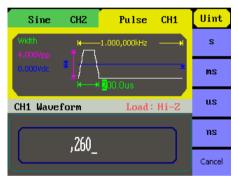


Рисунок 2-14 Установка длительности импульса

Установка длительности задержки

 Нажмите Pulse → Delay для установки длительности задержки.

Значение длительности задержки, отображаемое на экране после включения прибора, либо является значением по умолчанию, либо ранее использовавшимся значением. Если при выборе другой формы сигнала установленное значение длительности задержки станет недопустимым, то оно будет автоматически скорректировано.

2. Введите нужное значение длительности импульса (см. раздел "Средства ввода числовых значений"). Изменение немедленно отразится на выходном сигнале.

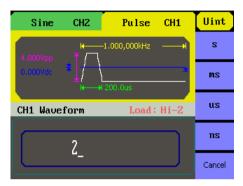


Рисунок 2-15 Установка длительности задержки

Получение сигнала шума

Нажмите кнопку **Noise** для выбора шумовой формы сигнала и вызова меню его настроек.

Для получения сигнала шума генератор позволяет задавать следующие параметры: амплитуда (Variance), смещение (Mean). Как показано на рис. 2-16, с помощью соответствующей кнопки меню выберите Variance. При этом курсор будет находиться на значении амплитуды белого в зоне отображения параметров и можно будет установить для нее нужное значение. Сигнал шума не имеет регулировок по частоте или периоду.

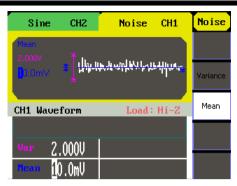


Рисунок 2-16 Меню настроек сигнала шума

Рисунок 2-17

Таблица 2-5 Меню настроек сигнала шума

Noise
Variance
Mean

Меню	Настройки	Комментарии
Variance		Установка амплитуды шума
Mean		Установка смещения

Получение сигнала произвольной формы

Нажмите кнопку **Arb** для выбора сигнала произвольной формы и вызова меню его настроек.

Для получения сигнала произвольной формы генератор позволяет задавать следующие параметры: частоту/период (**Freq/Period**), амплитуду/верхний уровень (**Ampl/HLevel**),

смещение/нижний уровень (Offset/LLevel) и фазу (Phase).

Сигналы произвольной формы подразделяются на два типа: встроенные в систему готовые варианты сигналов и задаваемые пользователем формы сигнала.

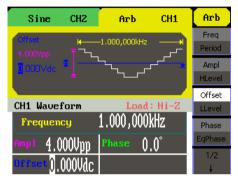


Рисунок 2-18 Меню настроек сигнала произвольной формы

Рисунок 2-19 Таблица 2-6 Меню настроек сигнала произвольной формы (страница 1/2)

Arb
Freq
Period
Ampl
HLevel
Offset
LLevel
Phase
EqPhase
1/2
+

Меню	Настройки	Комментарии
		Установка частоты или
Freq/		периода сигнала; текущий
Period		параметр возвращается
		повторным нажатием кнопки.
		Установка амплитуды или
Ampl/		верхнего уровня сигнала;
Ampl/ HLevel		текущий параметр
nLevel		возвращается повторным
		нажатием кнопки.
Offset/		Установка смещения и нижнего
		·
LLevel		уровня сигнала: текущий

параметр возвращается

	повторным нажатием кнопки.	
	Установка начальной фазы	
	сигнала; текущий параметр	
	возвращается повторным	
	нажатием кнопки.	
	Выбор EqPhase осуществляет	
Phase/	выравнивание фазы сигналов	
EqPhase	каналов СН1 и СН2 в	
	двухканальном режиме. При	
	этом вместо числового	
	значения фазы канала	
	отображается индикатор	
	EqPhase.	
1/2	Переход ко второй странице	
\downarrow	меню.	

Рисунок 2-20

Таблица 2-7 Меню настроек сигнала произвольной формы (страница 2/2)

Меню	Настройки	Комментарии
↑		Возврат к первой странице
2/2		меню.
Load Wform		Выбор встроенного сигнала
Load Wioiiii		произвольной формы.

Выбор сигнала произвольной формы

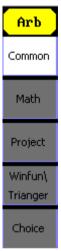
В генераторе имеется 45 готовых вариантов сигнала произвольной формы, а также имеется возможность создания пользователем и хранения до 10 оригинальных форм сигнала. Нажмите кнопку $Arb \rightarrow 1/2 \downarrow \rightarrow Load W form$ для вызова следующего меню (рис. 2-21).

Рисунок 2-21 Таблица 2-8 Меню выбора сигнала произвольной формы

Arb
Built-In
Stored Wforms
Cancel

Меню	Настройки	Комментарии
Built-In		Выбор одного из 45
		встроенных вариантов
Built-III		сигнала произвольной
		формы (см. Таблица 2-9)
		Выбор одного из сигналов,
Stored Wform		хранимых в
		энергозависимой памяти.
Cansel		Прерывание текущей
		операции и возврат в
		предыдущее меню (функция
		одинакова на всех уровнях
		меню и в дальнейшем не
		поясняется).

3. Выбор встроенного сигнала произвольной формы


Нажмите кнопку $Arb \rightarrow Load W form \rightarrow Built-In$ для вызова следующего меню (рис. 2-22).

С помощью соответствующей кнопки меню (Common, Math,

Project, **Winfun\Triangle**) выберите нужную библиотеку. Затем с помощью кнопок направления или поворотного регулятора выберите интересующую форму сигнала и нажмите **Select**.

Рисунок 2-22 Таблица 2-9 Меню встроенного сигнала произвольной формы

Меню	Настройки	Комментарии
Common	StairUp StairUn StairUD PPulse NPulse Trapezia UpRamp DnRamp	Библиотека общих сигналов
Math	ExpFall ExpRise LogFall LogRise Sgrt Root3 X*2 X*3 Sinc Gaussian Diorentz Haversin Lorentz Gauspuls Gmonpuls Tripuls	Библиотека математических сигналов
Project	Cardiac Quake Chirp TwoTone SNR	Библиотека сигналов для проектирования
Winfun\ Triangle	Hamming Hanning Kaiser Blackman Gaussian Triangle Haris Bartlett Tan Cot Sec Csc Asin Acos Atan ACot	Библиотека сигналов функций окна БПФ\ Библиотека сигналов тригонометрических функций
Select		Подтверждение выбора сигнала

Таблица 2-10 Перечень встроенных сигналов произвольной формы

Обозначение	Комментарий	
Common	Библиотека общих сигналов	
StairUp	ступенчатый подъем	
StairDn	ступенчатый спуск	
StairUD	ступенчатый подъем и спуск	
PPulse	положительный импульс	
NPulse	отрицательный импульс	
Trapezia	трапеция	
UpRamp	нарастающий пилообразный сигнал	
DnRump	спадающий пилообразный сигнал	
Math	Библиотека математических сигналов	

ExpFall	убывающая экспоненциальная функция		
ExpRise	возрастающая экспоненциальная функция		
LogFall	убывающая логарифмическая функция		
LogRise	возрастающая логарифмическая функция		
Sqrt	функция квадратного корня		
Root3	функция кубического корня		
X^2	квадратичная функция		
X^3	кубическая функция		
Sinc	sin(x)/x		
Gussian	функция Гаусса		
Dlorentz	функция D-Лоренца		
Haversine	гаверсинус		
Lorentz	функция Лоренца		
Gauspuls	синус модулированный импульсом Гаусса		
Gmonpuls	импульс Гаусса		
Tripuls	треугольный импульс		
Project	Библиотека сигналов для проектирования		
Cardiac	сигнал ЭКГ		
Quake	ударная волна		
Chirp	импульс с линейной частотной модуляцией		
TwoTone	двухтональный сигнал		
SNR	сигнал - шум		
Winfun	Библиотека сигналов функций окна для БПФ		
Hamming	окно Хамминга		
Hanning	окно Ханнинга		
Kaiser	окно Кайзера		
Blackman	окно Блекмэна		
GaussWin	окно Гауса		
Triang	треугольное окно (окно Фейера)		
Harris	окно Харриса		
Bartlett	окно Бартлетта		
Triangle	Библиотека сигналов тригонометрических функций		
Tan	тангенс		
Cot	котангенс		
Sec	секанс		
Csc	косеканс		
Asin	арксинус		
Acos	арккосинус		
Atan	арктангенс		
ACot	арккотангенс		

4. Выбор сохраненного сигнала произвольной формы

Нажмите кнопку Arb → Load Wform → Stored Wform для вызова следующего меню (рис. 2-23).

Рисунок 2-23 Выбор сохраненного сигнала произвольной формы

С помощью кнопок направления или поворотного регулятора выберите нужный сохраненный сигнал произвольной формы и нажмите **Select**.

5. Создание сигнала произвольной формы

Данный генератор не предусматривает автономного создания и редактирования сигнала произвольной формы. Однако это можно выполнить с помощью компьютера и установленной на нем программы **EasyWave**. Программа **EasyWave** поставляется вместе с прибором и позволяет, как создавать новый сигнал произвольной формы, так и редактировать уже имеющиеся встроенные и сохраненные в памяти генератора сигналы произвольной формы. После редактирования сигнал может быть загружен в генератор и сохранен в его памяти. Более подробная информация содержится в документации к программе **EasyWave**.

Получение модулированного сигнала

Кнопка **Mod** вызывает интерфейс и меню модулированного сигнала. Этот генератор позволяет получать модулированный видов: амплитудная модуляция (AM). сигнал следующих двухсторонняя амплитудная модуляция (DSB-AM), частотная модуляция (FM). фазовая модуляция (PM), амплитудная манипуляция (ASK), частотная манипуляция (FSK) широтно-импульсная модуляция (PWM). Параметры модуляции различаются в зависимости от вида модуляции.

- •При амплитудной модуляции (АМ) можно выбрать источник модулирующего сигнала (внутренний/внешний), коэффициент модуляции, частоту и форму модулирующего сигнала, частоту и форму несущей.
- •При двухсторонней амплитудной модуляции (DSB-AM) можно выбрать источник модулирующего сигнала (внутренний/внешний), частоту и форму несущей.
- При частотной модуляции (FM) можно выбрать источник модулирующего сигнала (внутренний/внешний), девиацию частоты, частоту и форму модулирующего сигнала, частоту и форму несущей.
- ●При фазовой модуляции (РМ) можно выбрать источник модулирующего сигнала (внутренний/внешний), девиацию фазы, частоту и форму модулирующего сигнала, частоту и форму несущей.
- При широтно-импульсной модуляции (РWM) можно выбрать источник модулирующего сигнала (внутренний/внешний), девиацию длительности импульса, частоту и форму модулирующего сигнала, частоту несущей.

- При амплитудной манипуляции (ASK) можно выбрать источник модулирующего сигнала (внутренний/внешний), частоту внутреннего модулирующего сигнала, частоту и форму несущей.
- При частотной манипуляции (FSK) можно выбрать источник модулирующего сигнала (внутренний/внешний), частоту внутреннего модулирующего сигнала, частоту скачка, частоту и форму несущей.

Далее в руководстве описаны методики настройки выше перечисленных параметров в соответствии с видом модуляции.

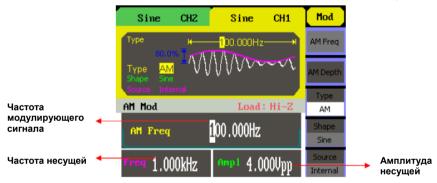


Рисунок 2-24 Вид интерфейса с параметрами модулированного сигнала

Амплитудная модуляция (АМ)

Модулированный сигнал состоит из сигнала несущей и модулирующего сигнала. При амплитудной модуляции (АМ) амплитуда несущей изменяется в соответствии с мгновенным напряжением модулирующего сигнала. Меню настроек амплитудной модуляции (АМ) описано в таблице 2-10.

Нажмите $Mod \rightarrow Type \rightarrow AM$ для вызова следующего меню.

Рисунок 2-25

Таблица 2-11 Меню настроек амплитудной модуляции (AM)

Mod
AM Freq
AM Depth
Type AM
Shape Sine
Source Internal

Меню	Настройки	Комментарии
AM Freq		Установка частоты
AWITTEG		модулирующего сигнала.
AM Depth		Установка коэффициента
Aw Deptil		модуляции
Type	AM	Амплитудная модуляция
Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Выбор формы внутреннего модулирующего сигнала. Для изменения параметров несущей используйте кнопки Sine, Square, Ramp и Arb
	Internal	Внутренний источник модулирующего сигнала.
Source	External	Внешний источник модулирующего сигнала. Модулирующий сигнал должен быть подан через разъем [Modulation In] на задней панели

Коэффициент модуляции еще называют глубиной модуляции. Устанавливается в диапазоне 0~120 %.

- При установке коэффициента модуляции 50 % амплитуда модуляции выходного сигнала будет составлять половину от заданного значения амплитуды несущей.
- При коэффициенте модуляции 100 % амплитуда модуляции выходного сигнала будет равна заданному значению амплитуды несущей.

 При выборе внешнего источника модулирующего сигнала амплитуда АМ модуляции управляется сигналом в диапазоне ±6 В, поступающим через разъем [Modulation In] на задней панели. Коэффициенту модуляции 100 % соответствует амплитуда модулирующего сигнала +6 В.

Двухсторонняя амплитудная модуляция (DSB-AM)

Модулированный состоит сигнал ИЗ сигнала несущей И модулирующего сигнала. При двухсторонней амплитудной модуляции (DSB-AM) амплитуда несущей изменяется В мгновенным соответствии напряжением модулирующего С сигнала, а при нулевом уровне модулирующего сигнала фаза несущей изменяется на 180°. Меню настроек двухсторонней амплитудной модуляции (DSB-AM) описано в таблице 2-11.

Нажмите $Mod \rightarrow Type \rightarrow DSB-AM$ для вызова следующего меню.

Рисунок 2-26

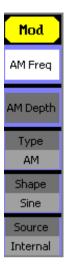


Таблица 2-12 Меню настроек двухсторонней амплитудной модуляции (DSB-AM)

Меню	Настройки	Комментарии
DSB Freq		Установка частоты
Dobineq		модулирующего сигнала.
Type	DSB-AM	Двухсторонняя амплитудная
Type	DOD-AW	модуляция
	Sine	
	Square	Выбор формы внутреннего
	Triangle	модулирующего сигнала. Для
Shape	UpRamp	изменения параметров
	DnRamp	несущей используйте кнопки
	Noise	Sine, Square, Ramp и Arb
	Arb	
	Internal	Внутренний источник
		модулирующего сигнала.
Source		Внешний источник
	External	модулирующего сигнала.
		Модулирующий сигнал должен
		быть подан через разъем
		[Modulation In] на задней
		панели

Частотная модуляция (FM)

Модулированный сигнал состоит из сигнала несущей и модулирующего сигнала. При частотной модуляции (FM) частота несущей изменяется в соответствии с мгновенным напряжением модулирующего сигнала.

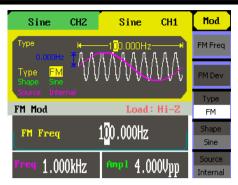
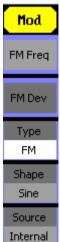



Рисунок 2-27 Вид интерфейса частотной модуляции (FM)

Меню настроек частотной модуляции (FM) описано в таблице 2-13.

Нажмите $Mod \rightarrow Type \rightarrow FM$ для вызова следующего меню.

Рисунок 2-28 Таблица 2-13 Меню настроек частотной модуляции (FM)

Меню	Настройки	Комментарии
		Установка частоты
		модулирующего сигнала;
FM Freq		диапазон установки частоты
1 Willey		2 мГц~20 кГц (только при
		выборе внутреннего источника
		модулирующего сигнала).
FM Dev		Установка девиации частоты
Type	FM	Частотная модуляция
	Sine	
	Square	Выбор формы внутреннего
	Triangle	модулирующего сигнала. Для
Shape	UpRamp	изменения параметров
	DnRamp	несущей используйте кнопки
	Noise	Sine, Square, Ramp и Arb
	Arb	

	Internal	Внутренний источник
		модулирующего сигнала.
	External	Внешний источник
Source		модулирующего сигнала.
		Модулирующий сигнал должен
		быть подан через разъем
		[Modulation In] на задней
		панели

Девиация частоты – это максимальное отклонение мгновенной частоты модулированного FM сигнала от частоты несущей.

- Девиация частоты не должна превышать частоты несущей.
- Сумма девиации частоты и частоты несущей не должна превышать верхнего предела установки частоты несущей.
- При выборе внешнего источника модулирующего сигнала его частота управляется сигналом в диапазоне ±6 В, поступающим через разъем [Modulation In] на задней панели. Положительному значению установленной девиации частоты соответствует амплитуда модулирующего сигнала +6 В, а отрицательному значению установленной девиации частоты соответствует амплитуда модулирующего сигнала –6 В.

Амплитудная манипуляция (ASK)

При использовании амплитудной манипуляции (ASK) можно настроить генератор для скачкообразного переключения амплитуды выходного сигнала от амплитуда несущей до нуля. Это позволяет интерпретировать цифровые данные аналоговым

сигналом путем изменения амплитуды несущей при постоянстве ее частоты и фазы.

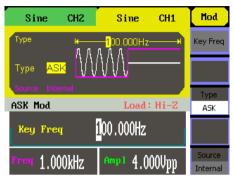


Рисунок 2-29 Вид интерфейса амплитудной манипуляции (ASK)

Меню настроек амплитудной манипуляции (ASK) описано в таблице 2-14.

Нажмите $Mod \rightarrow Type \rightarrow ASK$ для вызова следующего меню.

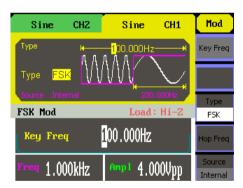
Рисунок 2-30 Таблица 2-14 Меню настроек амплитудной манипуляции (ASK)

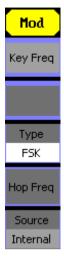
Меню	Настройки	Комментарии
		Установка частоты, с которой
		будет производиться
		скачкообразное переключение
		амплитуды выходного сигнала
Kov Eros		между амплитудой несущей и
Key Freq		нулем; диапазон установки
		частоты 2 мГц~50 кГц (только
		при выборе внутреннего
		источника модулирующего
		сигнала).
Type	ASK	Амплитудная манипуляция

	Internal	Внутренний источник
		модулирующего сигнала.
	External	Внешний источник
Source		модулирующего сигнала.
		Модулирующий сигнал должен
		быть подан через разъем
		[Modulation In] на задней
		панели.

Частотная манипуляция (FSK)

При использовании частотной манипуляции (FSK) можно настроить генератор для скачкообразного переключения частоты выходного сигнала между двумя заданными значениями (частота несущей и частота скачка).




Рисунок 2-31 Вид интерфейса частотной манипуляции (FSK)

Меню настроек частотной манипуляции (FSK) описано в таблице 2-15.

Нажмите $\mathbf{Mod} \to \mathbf{Type} \to \mathbf{FSK}$ для вызова следующего меню.

Рисунок 2-32 Таблица 2-15 Меню настроек частотной манипуляции (FSK)

(FSK) Меню	Настройки	Комментарии
Mento	пастроики	
		Установка частоты, с которой
		будет производиться
		скачкообразное переключение
		частоты выходного сигнала
Key Freq		между частотой несущей и
Reylieq		частотой скачка; диапазон
		установки частоты
		2 мГц~50 кГц (только при
		выборе внутреннего источника
		модулирующего сигнала).
Type	FSK	Частотная манипуляция
Hop Freq		Установка частоты скачка
	Internal	Внутренний источник
Source		модулирующего сигнала.
	External	Внешний источник
		модулирующего сигнала.
		Модулирующий сигнал должен
		быть подан через разъем
		[Ext Trig/Gate/FSK/Burst] на
		задней панели.
		,

Фазовая модуляция (РМ)

Модулированный сигнал состоит из сигнала несущей и модулирующего сигнала. При фазовой модуляции (РМ) фаза несущей изменяется в соответствии с мгновенным напряжением модулирующего сигнала.

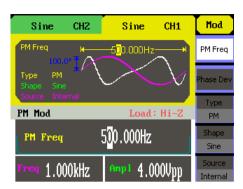


Рисунок 2-33 Вид интерфейса фазовой модуляции (РМ)

Меню настроек фазовой модуляции (РМ) описано в таблице 2-16.

Нажмите $\underline{\mathsf{Mod}} \to \mathsf{Type} \to \mathsf{PM}$ для вызова следующего меню.

Рисунок 2-34 Таблица 2-16 Меню настроек фазовой модуляции (РМ)

Mod
Pm Freq
Phase Dev
Type PM
Shape Sine
Source Internal

Меню	Настройки	Комментарии
		Установка частоты
		модулирующего сигнала;
PM Freq		диапазон установки частоты
FWITTE		2 мГц~20 кГц (только при
		выборе внутреннего источника
		модулирующего сигнала).
Phase Dev		Установка девиации фазы
Type	PM	Фазовая модуляция
	Sine	
	Square	Выбор формы внутреннего
	Triangle	модулирующего сигнала. Для
Shape	UpRamp	изменения параметров
	DnRamp	несущей используйте кнопки
	Noise	Sine, Square, Ramp и Arb
	Arb	

Source	Internal	Внутренний источник
		модулирующего сигнала.
	External	Внешний источник
		модулирующего сигнала.
		Модулирующий сигнал должен
		быть подан через разъем
		[Ext Trig/Gate/FSK/Burst] на
		задней панели.

Девиация фазы — это максимальное отклонение мгновенной фазы модулированного сигнала (PM) от фазы несущей.

Широтно-импульсная модуляция (PWM)

Сигнал широтно-импульсной модуляции (PWM) состоит из прямоугольного сигнала несущей и модулирующего сигнала. Длительность импульсов несущей изменяется в зависимости от мгновенного напряжения модулирующего сигнала.

Широтно-импульсная модуляция (PWM) может использоваться только для модуляции импульсного сигнала (**Pulse**).

Меню настроек широтно-импульсной модуляции (PWM) описано в таблице 2-17.

Нажмите кнопку **Pulse** для выбора прямоугольной формы сигнала, а затем нажмите **Mod** → **Type** → **PWM** для вызова следующего меню.

Таблица 2-17 Меню настроек широтно-импульсной модуляции (PWM)

Меню	Настройки	Комментарии
PWM Freq		Установка частоты модулирующего сигнала (кроме Noise); диапазон установки частоты 2 мГц~20 кГц (только при выборе внутреннего источника модулирующего сигнала).
WidthDev		Установка девиации длительности импульса
Туре	PWM	Широтно-импульсная модуляция
Shape	Sine Square Triangle UpRamp DnRamp Noise Arb	Выбор формы внутреннего модулирующего сигнала. Для изменения параметров несущей используйте кнопку Pulse
Source	Internal	Внутренний источник модулирующего сигнала.
	External	Внешний источник модулирующего сигнала. Модулирующий сигнал должен быть подан через разъем [Modulation In] на задней панели.

Девиация длительности импульса — это максимальное отклонение при модуляции длительности импульса (в секундах) относительно длительности импульса несущей.

Получение сигнала свип-генератора

В режиме свип-генератора производится изменение частоты выходного сигнала от начального до конечного значения в течение заданной длительности развертки.

Данный прибор дает возможность получать сигнал свип-генератора, как в одном выходном канале, так и в двух каналах одновременно. Генератор поддерживает линейную и логарифмическую развертку, внутренний, внешний и ручной запуска производит выходной сигнал режимы И синусоидальной, прямоугольной, пилообразной форм сигнала и сигнала произвольной формы (кроме импульсного сигнала и шума).

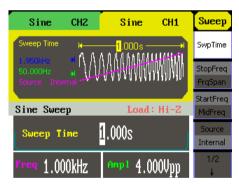


Рисунок 2-35 Вид интерфейса свип-генератора

Нажмите **Sweep** для вызова следующего меню.

Рисунок 2-36

Sweep
Swp Time
Stop Freq
FrqSpan
StartFreq
MidFreq
Source
Internal

Таблица 2-18 Меню настроек свип-генератора (страница 1/2)

Меню	Настройки	Комментарии
		Установка длительности
		развертки – времени, за
Swp Time		которое частота меняется от
		начального до конечного
		значения.
	Stop Freq	Установка конечного значения
Stop Freq/		частоты свип-генератора
FreqSpan	FreqSpan	Установка диапазона частоты
		свип-генератора
	Start Freq	Установка начального
Start Freg/		значения частоты
Mid Freq		свип-генератора
illia i req	Mid Freq	Установка центральной
		частоты свип-генератора
	Internal	Внутренний источник запуска
		Внешний источник запуска.
	External	Сигнал запуска должен быть
Source		подан через разъем
Source		[Ext Trig/Gate/FSK/Burst] на
		задней панели.
	Manual	Запуск и остановка развертки
		вручную нажатием этой кнопки
1/2		Переход ко второй странице
\downarrow		меню.

Установка частот свип-генерации

Диапазон частоты развертки можно задать двумя способами:

либо установкой значений **Start Freq** и **Stop Freq**, либо **FreqSpan** и **Mid Freq**. Повторное нажатие этих кнопок меню переключает способы задания развертки.

Рисунок 2-37

Таблица 2-19 Меню настроек свип-генератора (страница 2/2)

Меню	Настройки	Комментарии
1		Возврат к первой странице
2/2		меню.
Trig Out	Open	Установка запуска по фронту
		внешнего сигнала.
	Off	Отключение настроек запуска.
Linear/	Linear	Установка линейной развертки
	Log	Установка логарифмической
Log		развертки.
Direct	1	Установка развертки с
		нарастанием частоты.
	ļ	Установка развертки с
		убыванием частоты.

Генерация пачки

Эта функция позволяет формировать из сигнала любой формы пачки с заданным количеством периодов N (NCycle) или количеством периодов, управляемым внешним сигналом, так называемые стробированные пачки (Gated), как в одном выходном канале, так и в двух каналах одновременно. Прибор позволяет генерировать пачки из сигнала любой формы, однако сигнал шума может быть использован только для генерации стробированной пачки (Gated).

Нажмите **Burst** для вызова следующего меню (рис. 2-38) и установки параметров сигнала.

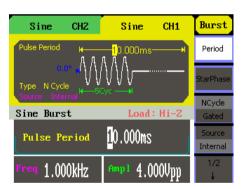


Рисунок 2-38 Вид интерфейса генерация пачки

Настройки генерации пачки с заданным количеством периодов

Нажмите **Burst** → **NCycle** для вызова следующего меню.

Рисунок 2-39

Таблица 2-20 Меню настроек генерации пачки с заданным количеством периодов (страница 1/2)

Меню	Настройки	Комментарии
Period		Установка периода
		повторения пачки
Start		Установка начальной фазы
Phase		сигнала в пачке
		Генерация пачки с заданным
NCycle		количеством периодов.
Gated		Генерация стробированной
		пачки
	Internal	Внутренний источник запуска
		Внешний источник запуска.
		Сигнал запуска должен быть
	External	подан через разъем
Source		[Ext Trig/Gate/FSK/Burst] на
		задней панели.
		Запуск и остановка генерации
	Manual	пачки вручную, путем нажатия
		этой кнопки
1/2		Переход ко второй странице
↓		меню.

Пачка с заданным количеством периодов N

Генерация каждой пачки, состоящей из заданного числа периодов основного сигнала, активируется событием запуска.

Стробированная пачка

Генерация пачки запускается и останавливается внешним сигналом.

Рисунок 2-40

Таблица 2-21 Меню настроек генерации пачки с заданным количеством периодов (страница 2/2)

Burst
2/2 †
Trig Out Off
Cycles Infinite
Delay

Меню	Настройки	Комментарии
↑		Возврат к первой странице
2/2		меню.
	₹	Запуск по фронту
Trig Out	₹_	Запуск по срезу
	Off	Отключение настроек запуска
		Установка числа периодов
Cycles		сигнала в пачке: N
Infinite		Установка бесконечного числа
		периодов
Delay		Установка задержки перед
	запуском пачки	

Период повторения пачки

Параметр период повторения пачки доступен только при использовании в качестве типа генерации пачки с заданным количеством периодов (**NCycle**) и задает время между началами двух смежных пачек.

- Период повторения пачки должен быть больше произведения периода основного сигнала на число периодов.
- При попытке установки более короткого периода повторения пачки генератор автоматически увеличит его до минимально допустимого значения для формирования заданного количества периодов в пачке.

Начальная фаза сигнала в пачке

Этот параметр определяет фазу начальной точки в пачке от 0° до 360°. Настройка по умолчанию: 0°.

- Для синусоидального, прямоугольного, пилообразного сигнала 0° соответствует точке перехода через уровень 0 В (или уровень постоянного смещения) к более высокому напряжению.
- Для сигнала произвольной формы 0° соответствует первой точке формы сигнала.

Установка числа периодов

Установка числа N периодов сигнала в пачке с заданным количеством периодов (**NCycle**) возможна от 1 до 50'000 или бесконечность (**Infinite**).

При выборе бесконечного числа периодов генерация не будет остановлена до очередного события запуска.

- При необходимости длительность периода пачки будет увеличена в соответствии с установленным числом периодов N.
- При выборе бесконечного числа периодов необходимо использование ручного или внешнего источника запуска для начала генерации пачки. При ручном запуске нажатие кнопки
 Manual запускает генерацию, а повторное нажатие этой кнопки останавливает ее.

Задержка

Задержка устанавливает временной интервал между событием запуска и началом генерации пачки с заданным количеством периодов (**NCycle**). Минимальное время задержки — 240 нс.

Настройки генерации стробированной пачки

Нажмите **Burst** → **Gated** для вызова следующего меню.

Рисунок 2-41

Burst

NCycle Gated Polarity Negative

StarPhase

Таблица 2-22 Меню настроек генерации стробированной пачки

Меню	Настройки	Комментарии
Start		Установка начальной фазы
Phase		пачки
NCycle Gated		Генерация пачки с заданным количеством периодов. Генерация стробированной пачки
Polarity	Positive Negative	Установка полярности стробированной пачки

Сохранение и загрузка

Нажмите кнопку **Store/Recall** для вызова следующего меню. Генератор позволяет сохранять, загружать и удалять файлы с настройками (**State**) или данными (**Data**) как в памяти генератора, так и в USB флеш-накопителе. Имя файла можно быть задано только английским алфавитом.

Рисунок 2-42 Вид интерфейса сохранения и загрузки

Рисунок 2-43

Таблица 2-23 Меню сохранения и загрузки

Меню	Настройки	Комментарии
	State	Файл настроек генератора
File Type	Data	Файл данных сигнала
File Type		произвольной формы
	All File	Все файлы
		Выбор режима браузера:
Browser	Path	дерево папок;
Diowsei	Directory	папка;
	File	файл
Save		Сохранение в выбранном
Save		месте
Recall		Загрузка выбранного файла
Delete		Удаление выбранного файла

Средства навигации браузера

Навигация браузера осуществляется кнопкам направления.

В режиме папки кнопка "ВПРАВО" позволяет открыть вложенную папку, а кнопка "ВЛЕВО" сворачивает открытую папку. Кнопки "ВВЕРХ" и "ВНИЗ" осуществляют переход между папками.

В режиме дерева папок кнопка "ВПРАВО" позволяет перемещаться по направлению от корня дерева, а кнопка "ВЛЕВО" позволяет перемещаться по направлению к корню дерева. Кнопки "ВВЕРХ" перемещает в корневую папку, а кнопка "ВНИЗ" перемещает в крайнюю папку или осуществляет прокрутку файлов.

Сохранение файла с настройками

Генератор позволяет сохранять до 10 вариантов настроек в собственной энергонезависимой памяти.

При этом сохраняются выбранные функции (включая сигнал произвольной формы), а также частота, амплитуда, смещение постоянной составляющей, коэффициент заполнения, коэффициент симметрии, параметры модуляции и т.д.

Для сохранения настроек выполните следующие действия:

- Выберите тип файла для сохранения
 Нажмите Store/Recall → Type → State для выбора типа файла настроек (State).
- 2. Выберите размещение файла. На диске Local (C:) имеется десять ячеек STATE1, STATE2, ..., STATE10, ячейка выбирается с помощью поворотного регулятора.
- 3. Присвойте имя файлу и сохраните его.

Нажмите кнопку **Save**, введите имя файла. Нажмите кнопку **Save** для завершения.

Сохранение файла с данными

Генератор позволяет сохранять до 10 вариантов сигналов произвольной формы в собственной энергонезависимой памяти. При записи ранее записанный в ячейке памяти сигнал будет утрачен.

Для сохранения данных выполните следующие действия:

- Выберите тип файла для сохранения
 Нажмите Store/Recall → Type → Data для выбора типа файла
 данных сигнала произвольной формы (Data).
- Выберите размещение файла.
 На диске Local (C:) имеются десять ячеек DATE1, DATE2, ...,
 DATE10, ячейка выбирается с помощью поворотного регулятора.
- 3. Присвойте имя файлу и сохраните его. Нажмите кнопку **Save**, введите имя файла. Нажмите кнопку **Save** для завершения.

Использование USB флеш-накопителя

Как показано на рисунке 2-44 память делится на внутреннюю (Local (C:)) и внешнюю (USB Device (A:)). С левой стороны передней панели находится интерфейс USB-хост. После подключения USB флеш-накопителя на экране будет отображено "USB Device (A:)". В противном случае, данные по умолчанию будут сохраняться во внутреннюю память (Local (C:)).

Рисунок 2-44 Вид интерфейса после подключения USB флеш-накопителя

1. Подключение USB флеш-накопителя

Вставьте USB флеш-накопитель в порт USB-хост на передней панели, на дисплее появится сообщение "USB flash device plug in", а также в окне браузера будет отображено "USB Device (A:)".

2. Выбор USB флеш-накопителя

Нажмите **Browser** → **Directory**, с помощью кнопок направления "ВВЕРХ" и "ВНИЗ" выберите **USB Device (A:)**. Нажмите кнопку "ВПРАВО", чтобы открыть папку и выберите файл "00000000".

Выберите **Data** или **State** и нажмите **Store**, после чего следует ввести имя файла и нажать **Store** снова для завершения операции сохранения.

3. Извлечение USB флеш-накопителя

Извлеките USB флеш-накопителя из порта USB-хост. На дисплее появится сообщение "USB flash device plug out" а также в окне браузера исчезнет "USB Device (A:)".

Замечание

Генератор не поддерживает портативные USB жесткие диски.

Сохранение файла

Нажмите Store/Recall → Store для вызова следующего меню.

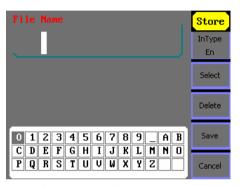



Рисунок 2-45 Вид интерфейса сохранения файла Введите нужное имя файла в поле имени файла (**File Name**) с помощью виртуальной клавиатуры. Кнопки "ВВЕРХ" и "ВНИЗ", а также поворотный регулятор позволяет выбрать нужный символ; с помощью кнопок "ВПРАВО" и "ВЛЕВО" можно редактировать имя файла.

Рисунок 2-46

Таблица 2-24 Меню сохранения файла

Меню	Настройки	Комментарии
InType	En	Английский язык ввода
Select		Выбор символа
Delete		Удаление текущего символа
Save		Сохранение файла с текущим
Save		именем
Cancel		Выход из меню

Меню утилит

Меню, вызываемое нажатием **Utility**, предлагает пользователю различные вспомогательные и сервисные функции, а также настройки генератора.

Нажмите **Utility** для вызова меню утилит.

Рисунок 2-47

Таблица 2-25 Меню утилит (страница 1/2)

Меню	Настройки	Комментарии
		Установка в качестве формы
DC	On	выходного сигнала DC для
	Off	текущего канала (СН1 или
		CH2)
IO Setup	USB Setup	Вызов меню настроек USB
10 Setup	GPIB	Вызов меню настроек GPIB
Output		Вызов меню настроек выхода
Setup		текущего канала (СН1 или
Setup		CH2)
		Вызов меню частотомера; в
Counter		режиме частотомера
Counter		генератор будет работать в
		одноканальном режиме.
1/2		Переход ко второй странице
\downarrow		меню.

Рисунок 2-48

Таблица 2-26 Меню утилит (страница 2/2)

Util
†
2/2
System
Test/
Cal
EditInfo
Update

Меню	Настройки	Комментарии
↑ 2/2		Возврат к первой странице меню.
System		Вызов меню настроек системы
Test/Cal		Вызов меню проверки прибора
EditInfo		Вызов на экран информации о приборе
Update		Вызов функции обновления внутренней программы генератора

Получение сигнала в форме постоянного уровня DC

Нажмите Utility → DC → On для вызова следующего интерфейса. Обратите внимание на индикатор этого режима слева в центре экрана "Direct Current On".

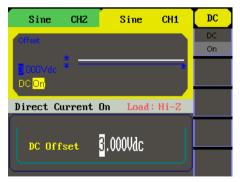


Рисунок 2-49 Вид интерфейса настроек сигнала в форме постоянного уровня DC

При этом на выходе текущего канала будет присутствовать сигнала в форме постоянного уровня DC с указанным на экране значением постоянного напряжения. Данная функция может использоваться независимо для каждого канала (CH1 и CH2).

Значение постоянного напряжения (**DC Offset**) может быть установлено с помощью средств ввода числовых значений (см. раздел **"Средства ввода числовых значений"**).

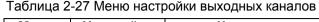
Для выключения сигнала в форме постоянного уровня DC в текущем канале следует нажать $\boxed{\text{Utility}} \rightarrow \boxed{\text{DC}} \rightarrow \boxed{\text{Off}}$ или любую кнопку выбора формы сигнала, а также кнопку $\boxed{\text{MOD}}$, $\boxed{\text{Sweep}}$ или $\boxed{\text{Burst}}$.

Настройки интерфейса

Нажмите Utility → IO Setup → USB Setup для вызова интерфейса позволяющего установить класс для ведомого устройства USB-прибор:

TMC: использует генератор в качестве устройства класса измерительный прибор TMC (Test & Measurement Class)

Нажмите Utility → IO Setup → GPIB для вызова интерфейса позволяющего установить GPIB-адрес, по умолчанию – 18.


Кнопка меню **Done** – выход с сохранением изменений. Кнопка меню **Cancel** – выход без сохранения изменений.

Настройки выходных каналов СН1 и СН2

Нажмите Utility → Output Setup для вызова следующего меню.

Рисунок 2-50

Util
Load
HighZ
Normal
Invert
Sync
Off
Done

Меню	Настройки	Комментарии
Load HighZ		Установка сопротивления нагрузки 50 Ом или высокого сопротивления.
Normal Invert		Нормальный выходной сигнал Инвертированный выходной сигнал
СНСору		Вызов меню копирования настроек канала
Sync		Вызов меню настроек выхода синхронизации
Done		Выход с сохранением изменений

Установка сопротивления нагрузки

Выходы каналов СН1 и СН2, расположенные на передней панели генератора, имеют импеданс 50 Ом. Если реальная нагрузка не соответствует, то отображаемые на дисплее амплитуда и смещение будут неверными. Эта функция используется для согласования значений отображенного напряжения и реального. Установка выходного сопротивления нагрузки производится индивидуально для каждого канала.

Выберите меню нужного канала с помощью кнопки СН1/2.

Нажмите $\boxed{\text{Utility}} o \text{Output Setup} o \text{Load}$ для установки сопротивления нагрузки 50 Ом.

Нажмите Utility → Output Setup → HighZ для установки высокого сопротивления нагрузки.

Инверсия выходного сигнала

Установка инверсии входного сигнала производится индивидуально для каждого канала.

Выберите меню нужного канала с помощью кнопки СН1/2.

Нажмите Utility → Output Setup → Invert для установки инверсии входного сигнала.

Нажмите $\boxed{\text{Utility}} o \text{Output Setup} o \text{Normal}$ для установки нормального входного сигнала.

Копирование настроек каналов

Нажмите Utility → CHCopy для вызова следующего меню.

Таблица 2-28 Меню копирования настроек каналов

Меню	Настройки	Комментарии
CH1→ CH2		Копирование настроек из канала СН1 в канал СН2
CH2→ CH1		Копирование настроек из канала СН2 в канал СН1
Done		Выход с сохранением изменений
Cancel		Выход без сохранения изменений

Настройки выхода сигнала синхронизации

Нажмите **Utility** → **Sync** для вызова следующего меню.

•	•	•
Меню	Настройки	Комментарии
State	On	Включение/выключение выхода
State	Off	сигнала синхронизации
CH1		Выбор синхронизации с выходным
CH2		сигналом канала CH1 или CH2
Done		Выход с сохранением изменений
Cancel		Выход без сохранения изменений

Таблица 2-29 Меню настроек выхода сигнала синхронизации

Генератор обеспечивает выходной сигнал, синхронизованный с выходным сигналом канала СН1 или СН2, через разъем [SyncOut], расположенный на задней панели прибор для всех стандартных функций выходного сигнала (кроме DC и шумового сигнала). Однако по ряду причин он может быть выключен на усмотрение оператора.

- •По умолчанию сигнал синхронизации включен; когда сигнал синхронизации выключен, уровень напряжения на разъеме [SyncOut] низкий.
- ●При включенной инверсии выходного сигнала, сигнал синхронизации не инвертируется.
- Синхросигнал имеет форму прямоугольных импульсов с фиксированной длительностью больше 50 нс.
- Для немодулированного сигнала сигнал синхронизации связан с несущей.
- Для внутренней модуляции AM, FM и PM сигнал синхронизации связан с модулирующим сигналом, а не с сигналом несущей.
- ●Для манипуляции ASK и FSK сигнал синхронизации связан с модулирующим сигналом.

- Для свип-генератора при запуске развертки на выходе [SyncOut]
 появляется высокий уровень ТТЛ, а частота сигнала синхронизации определяется длительностью развертки.
- Для генерации пачки сигнал синхронизации представляет собой прямоугольный импульс, высокий уровень ТТЛ которого появляется в момент появления пачки.
- Для генерации стробированной пачки сигнал синхронизации следует внешнему пусковому сигналу.

Измерение с помощью частотомера

Данный генератор оснащен частотомером, способным измерять частоту от 100 мГц до 200 МГц.

Нажмите Utility → Counter для вызова следующего меню.

Рисунок 2-51

Таблица 2-30 Меню частотомера

Util		
Freq		
Period		
Duty		
TrigLev		
PWidth		
NWidth		
Setup		

Меню	Настройки	Комментарии
Freq		Измерение частоты
Period		Измерение периода
Duty/ TrigLev		Измерение коэффициента заполнения. Установка уровня запуска.
PWidth/ NWidth		Измерение длительности: положительного импульса; отрицательного импульса.
Setup		Вызов меню настроек частотомера

Рисунок 2-52

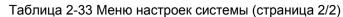
Таблица 2-31 Меню настроек частотомера

Util
Mode
AC
Default
HFR
Off
Cancel

Меню	Настройки	Комментарии
	DC AC	Установка связи:
Mode		по постоянному току;
		по переменному току.
Default		Возврат к настройкам по
Delault		умолчанию
HFR	On Off	Включение/выключение ФВЧ
Cancel		Выход без сохранения изменений

Настройки системы

Нажмите Utility → System для вызова следующего меню.


Рисунок 2-53 Таблица 2-32 Меню настроек системы (страница 1/2)

Меню	Настройки	Комментарии	
Number Format		Установка формата	
		отображения числовых	
1 Offilat		значений.	
Languago	английский	Выбор языка интерфейса	
Language	или китайский		
		Выбор настроек, загружаемых	
		при включении питания:	
PowerOn		настройки изготовителя;	
	Default	последние использованные	
	Last	настройки.	
Set to		Восстановление настроек	
Default		изготовителя	
1/2		Переход ко второй странице	
\downarrow		меню.	

Рисунок 2-54

Меню	Настройки	Комментарии
↑ 2/2		Возврат к первой странице меню.
Beep	On Off	Состояние звуковой сигнализации: включена; выключена
ScrnSvr	1min 5min 15min 30min 1hour 2hour 5hour Off	Установка времени до включения режима сохранения экрана
CLKSource	Internal External	Выбор источника опорного генератора: внутренний; внешний
Cancel		Выход без сохранения изменений

Ключевые моменты

Загрузка настроек при включении прибора

Выберите вариант настроек, загружаемых при включении питания прибора:

- •настройки изготовителя;
- •последние использованные настройки.

Звуковая сигнализация

Звуковая сигнализация действует в следующих случаях:

 ● оповещение об ошибке управления с передней панели или через дистанционное управление;

 при нажатии кнопок или использования поворотного регулятора.

Выбор языка интерфейса

Генератор предлагает два языка интерфейса: английский и китайский.

Нажмите Utility → System → Language для изменения языка интерфейса.

Установка формата отображения числовых значений Нажмите Utility → System → Number Format для вызова следующего меню.

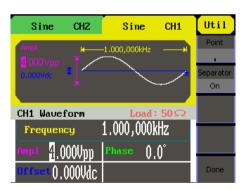


Рисунок 2-55 Установка формата числовых значений

Рисунок 2-56 Таблица 2-34 Меню установки формата отображения числовых значений

Util
Point
Separator
Space
Done

Меню	Настройки	Комментарии
Point	;	Выбор символа в качестве разделителя целой и дробной частей числа.
Separetor	On Off Space	Выбор символа в качестве разделителя тысяч: точка или запятая; без разделителя; пробел.
Done		Сохранение изменений

Имеется 6 комбинаций, представленных ниже, для формата отображения числовых значений.

		це дробн
Frequency	1.000,000kHz	т.
Frequency	1,000.000kHz	за
Frequency	1.000000kHz	T
Frequency	1,000000kHz	за
Frequency	1.000 000kHz	Т
Frequency	1,000 000kHz	за

Разделитель целой и дробной части	Разделитель тысяч
точка	запятая
(•)	(On)
запятая	точка
(🗗)	(On)
точка	нет
(•)	(Off)
запятая	нет
(🗗)	(Off)
точка	пробел
(•)	(Space)
запятая	пробел
(7)	(Space)

Замечание: в качестве разделителя тысяч и разделителя целой и дробной частей числа одновременно нельзя установить один и тот же символ.

Восстановление настроек изготовителя

Нажмите Utility → System → Set to Default для восстановления настроек изготовителя. Настройки изготовителя приведены в следующей таблице.

Таблица 2-35 Настройки изготовителя

Настройки выхода	По умолчанию
форма сигнала	синус
частота	1 кГц
амплитуда/смещение	4 В _{размах} /0 В _{постоянное}
фаза	0°
выход	высокое сопротивление
Модуляция	По умолчанию
сигнал несущей	синус, 1 кГц
модулирующий сигнал	синус, 100 Гц
коэффициент модуляции АМ	100 %
девиация частоты FM	500 Гц
скачковая частота FSK	1 МГц
частота переключения FSK и ASK	100 Гц
девиация фазы РМ	180°
	-
Свип-генератор	По умолчанию
начальная частота развертки	100 Гц
конечная частота развертки	1.9 кГц
длительность развертки	1 c
режим	линейная развертка
настройки запуска	отключены
направление	<u></u>

Генерация пачки	По умолчанию
период	10 мс
фаза	0°
число периодов	1
настройки запуска	отключены

Функции проверки прибора

Нажмите Utility → Test/Cal для входа в следующее меню.

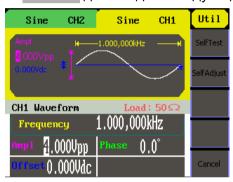


Рисунок 2-57 Вид интерфейса функции проверки прибора

Рисунок 2-58

Таблица 2-36 Меню функции проверки прибора

Util
SelfTest
SelfAdjust
Trouble
Cancel

Меню	Настройки	Комментарии
SelfTest		Вызов меню
		самодиагностику
SelfAdjust		Выполнение
SellAujust		самокалибровки
Cancel		Выход из меню

Меню самодиагностики

Нажмите Utility → Test/Cal → SelfTest для входа в следующее меню.

Рисунок 2-59

Таблица 2-37 Меню самодиагностики

Меню	Настройки	Комментарии
ScrTest		Выполнение проверки
3011001		экрана
		Выполнение проверки
KeyTest		кнопок и поворотного
		регулятора
LedTest		Выполнение проверки
Leurest		подсветки кнопок
Cancel		Выход из меню

Проверка экрана

Нажмите Utility → Test/Cal → SelfTest → ScrTest для проверки цветопередачи экрана. Процедура проверки выполняется нажатиями кнопки "7". Для завершения процедуры проверки нажмите кнопку "8".

Рисунок 2-60 Вид интерфейса функции проверки экрана

Проверка кнопок и поворотного регулятора

Нажмите Utility → Test/Cal → SelfTest → KeyTest для проверки функционирования кнопок. Пиктограммы на экране представляют соответствующие кнопки передней панели (прямоугольник с двумя стрелками по бокам представляют поворотный регулятор). Проверьте действие всех ручек и кнопок. Проверенные кнопки отображается на экране зеленым цветом.

Для завершения процедуры проверки трижды нажмите кнопку "8".

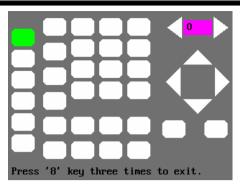


Рисунок 2-61 Вид интерфейса функции проверки кнопок и поворотного регулятора

Проверка подсветки кнопок

Нажмите Utility → Test/Cal → SelfTest → KeyTest для проверки функционирования подсветки кнопок. Пиктограммы на экране представляют соответствующие кнопки передней панели (прямоугольник с двумя стрелками по бокам представляют поворотный регулятор). Убедитесь в наличии подсветки кнопок, выделенных цветом на экране. Процедура проверки выполняется нажатиями кнопки "7". Для завершения процедуры проверки нажмите кнопку "8".

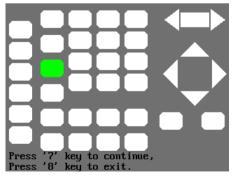


Рисунок 2-62 Вид интерфейса функции проверки подсветки кнопок

Информация о приборе

Нажмите $\boxed{\text{Utility}} \rightarrow 1/2 \downarrow \rightarrow \text{EditInfo}$ для получения информации о приборе, его серийном номере и версии прошивки внутренней программы.

Для выхода нажмите любую из кнопок меню, расположенных вдоль правой стороны экрана.

Рисунок 2-63 Вид интерфейса информации о приборе

Обновление внутренней программы генератора

Внутренняя программа генератора может быть обновлена с помощью USB флеш-накопителя. Процесс займет около двух минут.

- 1. Вставьте USB флеш-накопитель с записанным файлом обновления внутренней программы генератора в разъем USB-хост, расположенный на его передней панели.
- 2. Нажмите **Utility** → **1/2**↓ → **Update** для запуска процедуры обновления и следуйте инструкциям на экране.

ВНИМАНИЕ!

Перебои в питании генератора недопустимы до завершения процесса обновления внутренней программы генератора.

Использование встроенной системы помощи

Встроенная система помощи содержит информацию о работе и управлении генератора на английском языке.

Нажмите <u>Help</u> для входа в следующее меню и отображения на экране содержания разделов.

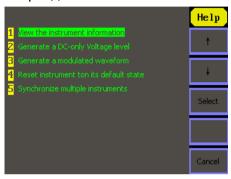
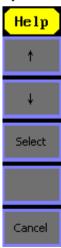



Рисунок 2-64 Вид интерфейса встроенной системы помощи

Рисунок 2-65 Таблица 2-38 Меню встроенной системы помощи

Меню	Настройки	Комментарии
1		Перемещение курсора вверх
↓		Перемещение курсора вниз
Select		Отображение выбранной информации
Cancel		Выход из меню

ГЛАВА 3 ПРИМЕРЫ ПРИМЕНЕНИЯ

В целях более эффективного получения навыка работы с генератором в этом разделе приведены детально описанные примеры его использования. Во всех описанных ниже примерах первоначально в генератор загружены настройки изготовителя по умолчанию.

Темы этой главы:

- Пример 1 Генерирование синусоидального сигнала
- Пример 2 Генерирование прямоугольных импульсов
- Пример 3 Генерирование пилообразного сигнала
- Пример 4 Генерирование импульсного сигнала
- Пример 5 Генерирование белого шума
- Пример 6 Генерирование сигнала произвольной формы
- Пример 7 Получение сигнала свип-генератора
- Пример 8 Получение сигнала пачки с заданным числом периодов
- Пример 9 Получение сигнала амплитудной модуляции (АМ)
- Пример 10 Получение сигнала частотной манипуляции (FSK)

Пример 1 Генерирование синусоидального сигнала

Получите синусоидальный сигнал с частотой 50 кГц, амплитудой 5.0 В_{размах} и смещением 1 В_{постоянное}.

- Выбор канала
- 1. С помощью кнопки **СН1/2** выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Установка частоты
- Нажмите Sine → Freq, при этом Freq должно быть отображено в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**50**" и выберите единицу измерения "**kHz**". Будет установлена частота 50 кГц.
- Установка амплитуды
- 1. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры **"5**" и выберите единицу измерения **"Vpp**". Будет установлена амплитуда 5.0 В_{размах}.
- Установка смещения
- 1. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете.

2. Введите с помощью цифровой клавиатуры "1" и выберите единицу измерения "Vdc". Будет установлено смещение 1.0 В_{постоянное}.

После установки значений частоты, амплитуды и смещения на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-1 характеристиками.

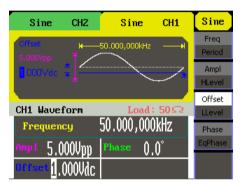


Рисунок 3-1 Пример генерации синусоидального сигнала

Пример 2 Генерирование прямоугольных импульсов

Получите прямоугольные импульсы с частотой 5 кГц, амплитудой $2.0~B_{\text{размах}}$, смещением $0~B_{\text{постоянное}}$ и коэффициентом заполнения 30~%.

- Выбор канала
- 1. С помощью кнопки СН1/2 выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.

- Установка частоты
- 1. Нажмите **Square** → **Freq**, при этом **Freq** должно быть отображено в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**5**" и выберите единицу измерения "**kHz**". Будет установлена частота 5 кГц.
- Установка амплитуды
- 1. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "2" и выберите единицу измерения "Vpp". Будет установлена амплитуда 2.0 В_{размах}.
- Установка смещения
- 1. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "0" и выберите единицу измерения "Vdc". Будет установлено смещение 0 В_{постоянное}.
- Установка коэффициента заполнения
- 1. С помощью соответствующей кнопки меню (**PulWidth/Duty**) выберите **Duty**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "30" и выберите единицу измерения "%". Будет установлен коэффициент

заполнения 30 %.

После установки значений частоты, амплитуды, смещения и коэффициента заполнения на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-2 характеристиками.

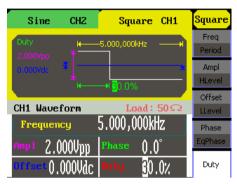


Рисунок 3-2 Пример генерации прямоугольных импульсов

Пример 3 Генерирование пилообразного сигнала

Получите пилообразный сигнал с периодом 10 мкс, амплитудой 100 мВ $_{\rm размах}$, смещением 20 мВ $_{\rm постоянное}$, фазой 45° и коэффициентом симметрии 30 %.

- Выбор канала
- 1. С помощью кнопки **СН1/2** выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Установка периода
- 1. Нажмите Ramp → Freq → Period, при этом пункт Period

- должен быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**10**" и выберите единицу измерения "**us**". Будет установлен период 10 мкс.
- Установка амплитуды
- 1. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**100**" и выберите единицу измерения "**mVpp**". Будет установлена амплитуда 100 мВ_{размах}.
- Установка смещения
- 1. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры **"20"** и выберите единицу измерения **"mVdc"**. Будет установлено смещение 20 мВ_{постоянное}.
- Установка фазы
- 1. С помощью соответствующей кнопки меню (**Phase**/**EqPhase**) выберите **Phase**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры **"45"** и выберите градус в качестве единицы измерения. Будет установлена фаза 45°.

- Установка коэффициента симметрии
- 1. Нажмите **Symmetry**, при этом пункт **Symmetry** должен быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**30**" и выберите единицу измерения "**%**". Будет установлен коэффициент симметрии 30 %.

После установки значений периода, амплитуды, смещения, фазы и коэффициента симметрии на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-3 характеристиками.

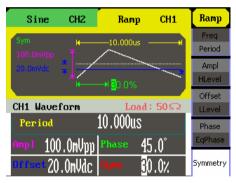


Рисунок 3-3 Пример генерации пилообразного сигнала

Пример 4 Генерирование импульсного сигнала

Получите импульсный сигнал с частотой 5 кГц, верхним уровнем 5 В, нижним уровнем -1 В, длительностью импульса 40 мкс и задержкой 20 нс.

- Выбор канала
- 1. С помощью кнопки **СН1/2** выберите меню канала СН1.

- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Установка частоты
- Нажмите Pulse → Freq, при этом Freq должно быть отображено в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры **"5"** и выберите единицу измерения **"kHz**". Будет установлена частота 5 кГц.
- Установка верхнего уровня
- 1. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **HLevel**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**5**" и выберите единицу измерения "**V**". Будет установлен верхний уровень 5 В.
- Установка нижнего уровня
- 1. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **LLevel**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "-1" и выберите единицу измерения "V". Будет установлен нижний уровень -1 В.
- Установка длительности импульса
- 1. С помощью соответствующей кнопки меню (**PulWidth/Duty**) выберите **PulWidth**, при этом данный пункт быть отображен в инверсном цвете.

- 2. Введите с помощью цифровой клавиатуры "**40**" и выберите единицу измерения "**us**". Будет установлена длительность импульса 40 мкс.
- Установка длительности задержки
- 1. Нажмите **Delay**, при этом **Delay** должно быть отображено в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "20" и выберите единицу измерения "ns". Будет установлена длительность задержки 20 нс.

После установки значений частоты, верхнего и нижнего уровней, длительности импульса и задержки на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-4 характеристиками.

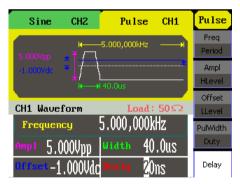


Рисунок 3-4 Пример генерации импульсного сигнала

Пример 5 Генерирование белого шума

Получите сигнал белого шума с амплитудой 50 мВ_{размах} и смещением 5 мВ_{постоянное}.

Последовательность действий:

- Выбор канала
- 1. С помощью кнопки СН1/2 выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Установка амплитуды
- Нажмите Noise → Ampl, при этом Ampl должно быть отображено в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**50**" и выберите единицу измерения "**mVpp**". Будет установлена амплитуда 50 мВ_{размах}.
- Установка смещения
- 1. Нажмите **Offset**, при этом **Offset** должно быть отображено в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "5" и выберите единицу измерения "mVdc". Будет установлено смещение 10 мВ_{постоянное}.

После установки значений амплитуды и смещения на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-5 характеристиками.

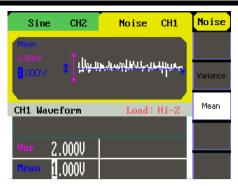


Рисунок 3-5 Пример генерации белого шума

Пример 6 Генерирование сигнала произвольной формы

Получите сигнал с формой $\sin(x)/x$, частотой 5 МГц, амплитудой 2 $B_{\text{СК3}}$ и смещением 0 $B_{\text{постоянное}}$.

Последовательность действий:

- Выбор канала
- 1. С помощью кнопки СН1/2 выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Выберите форму сигнала
- Нажмите кнопки Arb → 1/2↓ → Load Wform для вызова меню выбора встроенного сигнала произвольной формы.
- 2. Нажмите кнопки **Built-In** → **Math**. Выберите **Sinc** и нажмите **Select** для подтверждения выбора.
- Установка частоты
- 1. Нажмите кнопку **Freq**, при этом **Freq** должно быть отображено

- в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "**5**" и выберите единицу измерения "**MHz**". Будет установлена частота 5 МГц.
- Установка амплитуды
- 1. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "2" и выберите единицу измерения "Vrms". Будет установлена амплитуда 2.0 В_{СКЗ}.
- Установка смещения
- 1. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете.
- 2. Введите с помощью цифровой клавиатуры "0" и выберите единицу измерения "Vdc". Будет установлено смещение 0 Впостоянное.

После выбора встроенного сигнала произвольной формы и установки значений частоты, амплитуды и смещения на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-6 характеристиками.

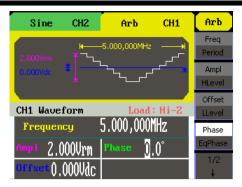


Рисунок 3-6 Пример генерации встроенного сигнала произвольной формы

Пример 7 Получение сигнала свип-генератора

Получите сигнал свип-генератора с линейной разверткой, начальной частотой развертки 100 Гц, конечной частотой развертки 100 кГц и длительностью развертки 2 с.

Последовательность действий:

- Выбор канала
- 1. С помощью кнопки **СН1/2** выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Выберите форму сигнала
 Нажмите Sine для выбора синуса в качестве формы сигнала.
- Установка частоты, амплитуды и смещения
- 1. Нажмите кнопку **Freq**, при этом **Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "5" и выберите единицу измерения "**kHz**". Будет установлена

частота 5 кГц.

- 2. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "5" и выберите единицу измерения "**Vpp**". Будет установлена амплитуда 5.0 В_{размах}.
- 3. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "**0**" и выберите единицу измерения "**Vdc**". Будет установлено смещение 0 В_{постоянное}.
- Установка длительности развертки
 Нажмите кнопки Sweep → Swp Time, при этом Swp Time
 должно быть отображено в инверсном цвете. Введите с
 помощью цифровой клавиатуры "2" и выберите единицу
 измерения "s". Будет установлена длительность развертки 2 с.
- Установка начальной частоты развертки
 С помощью соответствующей кнопки меню (Start Freq/Mid Freq) выберите Start Freq, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "100" и выберите единицу измерения "Hz". Будет установлена начальная частота 100 Гц.
- Установка конечной частоты развертки
 С помощью соответствующей кнопки меню
 (Stop Freq/FreqSpan) выберите Stop Freq, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью

цифровой клавиатуры "**10**" и выберите единицу измерения "**kHz**". Будет установлена начальная частота 10 кГц.

Установка линейной разверткой
 Нажмите кнопку 1/2↓ для перехода на страницу 2/2. С
 помощью соответствующей кнопки меню (Linear/Log)
 выберите Linear, при этом данный пункт быть отображен в
 инверсном цвете.

После установки всех вышеуказанных параметров на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-7 характеристиками.

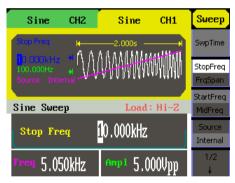


Рисунок 3-7 Пример получения сигнала свип-генератора

Пример 8 Получение сигнала пачки с заданным числом периодов

Получите сигнал пачки из 5 периодов сигнала с периодом повторения пачки 10 мкс.

Последовательность действий:

- Выбор канала
- 1. С помощью кнопки СН1/2 выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Выберите форму сигнала
 Нажмите **Sine** для выбора синуса в качестве формы сигнала.
- Установка частоты, амплитуды и смещения
- 1. Нажмите кнопку **Freq**, при этом **Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "**10**" и выберите единицу измерения "**kHz**". Будет установлена частота 10 кГц.
- 2. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "1" и выберите единицу измерения "**Vpp**". Будет установлена амплитуда 1.0 В_{размах}.
- 3. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "**0**" и выберите единицу измерения "**Vdc**". Будет установлено смещение 0 В_{постоянное}.
- Выберите режим генерации пачки с заданным количеством периодов

Нажмите **Burst**→**NCycle**

- Установка периода повторения пачки
 Нажмите кнопку Period, при этом Period должно быть
 отображено в инверсном цвете. Введите с помощью цифровой
 клавиатуры "10" и выберите единицу измерения "us". Будет
 установлен период повторения пачки 10 мкс.
- Установка число периодов сигнала в пачке
 Нажмите кнопку 1/2↓ для перехода на страницу 2/2. С
 помощью соответствующей кнопки меню (Cycles/Infinite)
 выберите Cycles, при этом данный пункт быть отображен в
 инверсном цвете. Введите с помощью цифровой клавиатуры
 "5" и выберите единицу измерения "Cycle". Будет установлено
 число периодов сигнала в пачке 5.

После установки всех вышеуказанных параметров на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-8 характеристиками.

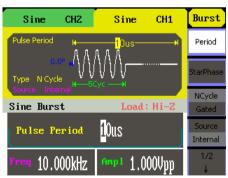


Рисунок 3-8 Пример получения сигнала пачки

Пример 9 Получение сигнала амплитудной модуляции (AM)

Получите сигнал амплитудной модуляции (AM) с коэффициентом модуляции 80 %; несущая в форме синуса с частотой 10 кГц и модулирующий сигнал в форме синуса с частотой 200 Гц.

Последовательность действий:

- Выбор канала
- 1. С помощью кнопки **СН1/2** выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Установите нужные параметры для несущей
- 1. Нажмите **Sine** для выбора синуса в качестве формы сигнала.
- 2. Нажмите кнопку **Freq**, при этом **Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "**10**" и выберите единицу измерения "**kHz**". Будет установлена частота 10 кГц.
- 3. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "1" и выберите единицу измерения "**Vpp**". Будет установлена амплитуда 1.0 В_{размах}.
- С помощью соответствующей кнопки меню (Offset/LLevel) выберите Offset, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "0" и выберите единицу измерения "Vdc". Будет установлено смещение 0 В_{постоянное}.

- Задайте тип модуляции и ее параметры
- Нажмите Mod → Type → AM для выбора амплитудной модуляции (AM). При этом в средине экрана должен появиться индикатор "AM Mod".
- 2. Нажмите **AM Freq**, при этом **AM Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "**200**" и выберите единицу измерения "**Hz**". Будет установлена частота 200 Гц.
- 3. Нажмите **AM Depth**, при этом **AM Depth** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "80" и выберите единицу измерения "%". Будет установлен коэффициент модуляции 80 %.
- 4. Нажмите **Shape** и выберите синус (**Sine**) в качестве формы модулирующего сигнала.

После установки всех вышеуказанных параметров на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-9 характеристиками.

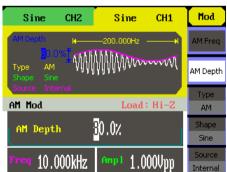


Рисунок 3-9 Пример получения сигнала амплитудной модуляции (AM)

Пример 10 Получение сигнала частотной манипуляции (FSK)

Получите сигнал частотной манипуляции (FSK) с частотой переключения 200 Гц, несущей в форме синуса с частотой 10 кГц и частотой скачка 500 Гц.

Последовательность действий:

- Выбор канала
- 1. С помощью кнопки **СН1/2** выберите меню канала СН1.
- 2. С помощью кнопки **Output** канала CH1 включите выход этого канала.
- Установите нужные параметры для несущей
- 1. Нажмите **Sine** для выбора синуса в качестве формы сигнала.
- 2. Нажмите кнопку **Freq**, при этом **Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "**10**" и выберите единицу измерения "**kHz**". Будет установлена частота 10 кГц.
- 3. С помощью соответствующей кнопки меню (**Ampl/HLevel**) выберите **Ampl**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "5" и выберите единицу измерения "**Vpp**". Будет установлена амплитуда 5.0 В_{размах}.
- 4. С помощью соответствующей кнопки меню (**Offset/LLevel**) выберите **Offset**, при этом данный пункт быть отображен в инверсном цвете. Введите с помощью цифровой клавиатуры "**0**" и выберите единицу измерения "**Vdc**". Будет установлено смещение 0 В_{постоянное}.

- Задайте тип модуляции и ее параметры
- Нажмите Mod → Type → FSK для выбора частотной манипуляции (FSK). При этом в средине экрана должен появиться индикатор "FSK Mod".
- 2. Нажмите **Key Freq**, при этом **Key Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "200" и выберите единицу измерения "**Hz**". Будет установлена частота переключения 200 Гц.
- 3. Нажмите **Hop Freq**, при этом **Hop Freq** должно быть отображено в инверсном цвете. Введите с помощью цифровой клавиатуры "500" и выберите единицу измерения "**Hz**". Будет установлена частота скачка 500 Гц.

После установки всех вышеуказанных параметров на выходе канала СН1 будет получен сигнал с указанными на рисунке 3-10 характеристиками.

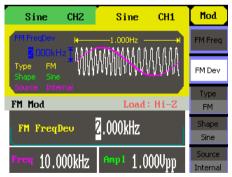


Рисунок 3-10 Пример получения сигнала частотной манипуляции (FSK)

ГЛАВА 4 УСТРАНЕНИЕ НЕПОЛАДОК

1. Темный экран (нет изображения) после включения питания

- (1)Проверьте правильность подключения кабеля питания.
- (2)Проверьте, была ли нажата кнопка включения прибора.
- (3)Еще раз включите прибор после проведения указанных проверок.
- (4) Если проблема остается, свяжитесь с ООО "ЮнионТЕСТ" для обслуживания вашего прибора.

2. Настройки выполнены правильно, но сигнал на выходе генератора отсутствует

- (1)Проверьте правильность подключения кабеля BNC к выходному разъему нужного канала ([CH1] или [CH2]).
- (2)Проверьте исправность кабеля BNC.
- (3)Проверьте состояние соответствующих выходу кнопок **Output**, возможно выключена нужная кнопка.
- (4)Установите Utility → System → PowerOn → Last и затем выключите и снова включите прибор после проведения указанных проверок.
- (5)Если проблема остается, свяжитесь с ООО "ЮнионТЕСТ" для обслуживания вашего прибора.

ГЛАВА 5 ПРИЛОЖЕНИЯ

Приложение А. Стандартный комплект поставки и дополнительное оборудование

Стандартный комплект поставки

- Генератор UDG101
- ●Кабель питания, соответствующий стандарту страны эксплуатации прибора
- Руководство по эксплуатации
- •Диск CD (Руководство по эксплуатации и программа EasyWave)

Дополнительные принадлежности

- Кабель BNC
- Кабель USB
- ◆Адаптер USB-GPIB (IEEE 488.2)

Для приобретения стандартных или дополнительных принадлежностей обратитесь к региональному дистрибьютору ООО "ЮнионТЕСТ".

Приложение Б. Характеристики

Все технические характеристики применимы к двухканальным универсальным генераторам сигналов /сигналов произвольной формы серии UDG101 за исключением специально оговоренных случаев. Все характеристики, за исключением случаев, помеченных как "типовое", гарантируются при обязательном выполнении следующих условий:

- предварительный прогрев прибора в течение 30 минут в пределах указанной температуры (18~28 °C);
- выполнена процедура самокалибровки и температура после ее выполнения не изменялась больше 5 °C.

Модель	UDG101/1	UDG101/2	UDG101/3	UDG101/4	UDG101/5
Максимальная частота	5 МГц	10 МГц	20 МГц	25 МГц	50 МГц
Число выходных каналов	2				
Частота дискретизации	125 МГц				
Длина сигнала произвольной формы	16 тыс. точе	ЭК			
Разрешение по частоте	1 мкГц	1 мкГц			
Вертикальное разрешение	14 бит				
Генерируемые формы сигналов	синусоидальный, прямоугольный, пилообразный, импульсный, белый шум, 46 встроенных сигналов произвольной формы (включая DC)				
Модуляция	AM, FM, PM, FSK, ASK, PWM, свип-генератор, генерация пачки				
Частотомер	диапазон измеряемой частоты: 100 мГц~200 МГц				
Стандартные интерфейсы	USB-хост, USB-прибор				
Интерфейс (опция)	адаптер USB-GPIB(IEEE-488)				
Размеры (ШхВхД)	229 х 105 х 281 мм				

Частотные характеристики

Модель	UDG101/1	UDG101/2	UDG101/3	UDG101/4	UDG101/5
Синусоидальный	1 мкГц~	1 мкГц~	1 мкГц~	1 мкГц~	1 мкГц~
сигнал	5 МГц	10 МГц	20 МГц	25 МГц	50 МГц
Прямоугольный	1 мкГц~	1 мкГц~	1 мкГц∼	1 мкГц∼	1 мкГц∼
сигнал	5 МГц	10 МГц	20 МГц	25 МГц	25 МГц
Импульсный	500 мкГц∼	500 мкГц∼	500 мкГц~	500 мкГц∼	500 мкГц∼
сигнал	5 МГц	5 МГц	5 МГц	5 МГц	5 МГц
Пилообразный	1 мкГц~	1 мкГц∼	1 мкГц~	1 мкГц∼	1 мкГц∼
сигнал	300 кГц	300 кГц	300 кГц	300 кГц	300 кГц
Белый шум	>5 МГц	>10 МГц	>20 МГц	>25 МГц	50 МГц
	(-3 дБ)	(-3 дБ)	(-3 дБ)	(-3 дБ)	(-3dB)
Сигнал произвольной формы	1 мкГц∼ 5 МГц	1 мкГц∼ 5 МГц	1 мкГц∼ 5 МГц	1 мкГц∼ 5 МГц	1 мкГц∼ 5 МГц
Разрешение	1 мкГц				
Погрешность	±50 млн ⁻¹ (90 дней после калибровки) ±100 млн ⁻¹ (1 год после калибровки) при температуре 18~28 °C				
Температурный коэффициент	меньше 5 млн ⁻¹ /°C				

Качество сигнала синус

ž.	
Нелинейные искажения	CH1/CH2
постоянный ток ~1 МГц	меньше -60 дБн
1 ~ 5 МГц	меньше -53 дБн
5 ~ 25 МГц	меньше -35 дБн
25 ~ 50 МГц	меньше -32 дБн
Коэффициент гармоник	меньше 0.2 % (постоянный ток~20 кГц, 1 В _{размах})
Побочный сигнал (негармонический)	меньше -70 дБн (постоянный ток~1 МГц) меньше -70 дБн + 6 дБ/[спектральная фаза] (1~10 МГц)
Фазовый шум	не больше минус 108 дБн/Гц, при девиации 10 кГц (типовое)

Прямоугольный сигнал

Длительность фронта/среза		меньше 12 нс (по уровням 10~90 %)	
Выброс на фронте/срезе		меньше 5 % (типовое, 1 кГц, 1 В _{размах})	
	1 мкГц~10 МГц	20 ~ 80 %	
Коэфф. свыше 10 ~ 20 МГ	свыше 10 ~ 20 МГц	40 ~ 60 %	
свыше 20 ~ 25 МГц		50 %	
Несимметрия (для меандра)		1 % периода + 20 нс (типовое, 1 кГц, 1 В _{размах})	
Отклонение фазы		0.1 % периода (типовое, 1 кГц, 1 В _{размах})	

Пилообразный/треугольный сигнал

Линейность	меньше 0.1 % амплитуды (типовое, 1 кГц, 1 Вразмах, симметрия 100 %)
Симметрия	от 0 до 100 %

Импульсный сигнал

Длительность импульса	от 16 нс до 1998 с, мин., разрешение 1 нс
Длительность фронта/среза (типовое, по уровням 10~90 %, 1 кГц, 1 В _{размах})	7 нс (типовое)
Коэффициент заполнения	разрешение 0.1 %
Выброс на фронте/срезе	меньше 5 %
Отклонение фазы	8 нс (типовое)

Замечание: допустимый диапазон длительности импульса зависит от прочих установок значений параметров импульсного сигнала.

Сигнал произвольной формы

Количество точек сигнала	16'000
Вертикальное разрешение	14 бит
Частота дискретизации	125 МГц
Минимальная длительность фронта/среза	7 нс (типовое)
Отклонение фазы (размах)	8 нс (типовое)
Кол-во хранимых в энергонезависимой памяти форм сигнала пользователя	до 10

Выходные характеристики

Канал	CH1	CH2
Амплитуда	2 мВ _{размах} ~10 В _{размах} (50 Ом, до 10 МГц) 2 мВ _{размах} ~5 В _{размах} (50 Ом, свыше 10 МГц) 4 мВ _{размах} ~20 В _{размах} (высокое сопротивление, до 10 МГц) 4 мВ _{размах} ~10 В _{размах} (высокое сопротивление, свыше 10 МГц)	2 мВ _{размах} ~3 В _{размах} (50 Ом) 4 мВ _{размах} ~6 В _{размах} (высокое сопротивление)
Погрешность (100 кГц, синус)	\pm [0.3 дБ (относительно установ 1 мВ _{размах}]	вленного значения) +
Неравномерность амплитудной характеристики (типовое, относительно 100 кГц, синус, 5 В _{размах})		
Взаимное влияние каналов	меньше минус 70 дБн	

Постоянное смещение

Канал	CH1	CH2
Макс. диапазон	- (,	±1.5 В (50 Ом) ±3 В (высокое сопротивление)
Погрешность	± (установленное значение х 1 %+3 мВ)	

Замечание: допустимый диапазон напряжения постоянного смещения зависит от установок амплитуды (размаха) и частоты сигнала.

Выход сигнала

Канал	CH1	CH2
Импеданс	50 Ом (типовое)	50 Ом (типовое)
Защита	защита от короткого замыкания	защита от короткого замыкания

Амплитудная мод	уляция АМ (СН1/СН2)	
Сигнал несущей	синус, прямоугольный, пилообразный, произвольной формы (кроме DC)	
Источник	внутренний/внешний	
Модулирующий сигнал	синус, прямоугольный, пилообразный, шум, произвольной формы (кроме DC): 2 мГц~20 кГц	
Коэффициент модуляции	от 0 до 120 %	
Частотная модуля	ция FM (CH1/CH2)	
Сигнал несущей	синус, прямоугольный, пилообразный, произвольной формы (кроме DC)	
Источник	внутренний/внешний	
Модулирующий сигнал	синус, прямоугольный, пилообразный, шум, произвольной формы (кроме DC): 2 мГц~20 кГц	
Макс. девиация частоты	0~0.5 от диапазона; разрешение 1 мГц Замечание: допустимый диапазон зависит от прочих установок.	
Фазовая модуляці	ия РМ (CH1/CH2)	
Сигнал несущей	синус, прямоугольный, пилообразный, произвольной формы (кроме DC)	
Источник	внутренний/внешний	
Модулирующий сигнал	синус, прямоугольный, пилообразный, шум, произвольной формы (кроме DC): 2 мГц~20 кГц	
Девиация фазы	от 0 до 360°, разрешение 0.1°	
Частотная манипуляция FSK (CH1/CH2)		
Сигнал несущей	синус, прямоугольный, пилообразный, произвольной формы (кроме DC)	
Источник	внутренний/внешний	
Модулирующий сигнал	меандр (2 мГц∼50 кГц)	

Амплитудная манип	уляция ASK (CH1/CH2)
Сигнал несущей	синус, прямоугольный, пилообразный, произвольной формы (кроме DC)
Источник	внутренний/внешний
Модулирующий сигнал	меандр (2 мГц∼50 кГц)
Широтно-импульсна	я модуляция (PWM) (CH1/CH2)
Модулирующий сигнал	синус, прямоугольный, пилообразный, шум, произвольной формы (кроме DC): 2 мГц~20 кГц
Источник	внутренний/внешний
Диапазон амплитуды внешнего модулирующего сигнала	от минус 6 до плюс 6 В (±6 В соответствуют установленной девиации длительности импульса)
Сигнал свип-генерат	opa (CH1/CH2)
Сигнал несущей	синус, прямоугольный, пилообразный, произвольной формы (кроме DC)
Тип развертки	линейная, логарифмическая
Направление	увеличение или снижение частоты
Длительность развертки	от 1 мс до 500 с
Источник запуска	внутренний, внешний или вручную
Генерация пачки (СН	I1/CH2)
Сигнал несущей	синус, прямоугольный, пилообразный, импульсный, произвольной формы (кроме DC)
Тип	установленное число периодов (от 1 до 50'000 или бесконечное), стробированная пачка
Старт/Стоп фаза	от 0° до 360°
Внутренний период	от 1 мкс до 500 с
Источник стробирования	внешний запуск
Источник запуска для установленного числа периодов	внутренний, внешний или вручную

Входы на задней панели

Внешний модулирующий сигнал	±6 В = модуляция 100 %, импеданс входа не меньше 5 кОм	
Замечание:	апряжение на входе не должно превышать ±6 В, в противном случае рибор может быть поврежден.	

Вход внешнего запуска

Уровень сигнала	ТТЛ-совместимый			
Фронт	фронт или срез (опция)			
Длительность импульса	больше 100 нс			
Импеданс входа	больше 5 кОм, открытый вход (DC)			

Выход пускового сигнала

Уровень сигнала	ТТЛ-совместимый
Длительность импульса	больше 400 нс
Импеданс выхода	50 Ом (типовое)
Макс. частота	1 МГц

Выход сигнала синхронизации

Уровень сигнала	ТТЛ-совместимый
Длительность импульса	больше 50 нс
Импеданс выхода	50 Ом (типовое)
Макс. частота	2 МГц

Частотомер

Измеряемые величины	частота, период, длительность импульса/паузы между импульсами, коэффициент заполнения					
Диапазон измеряемой частоты	от 100 мГц до 200 МГц					
Разрешение для частоты	6 бит/с					
Диапазон напряжения (сигнал без модуляции)						
		диапазон с	мещения	(DC)	±1.5 В _{постоянное}	
		открытый	100 мГц~100 МГц		50 мB _{СК3} ~±2.5 В	
Ручной запуск		вход (DC)	100~200 МГц		100 мВ _{СКЗ} ~±2.5 В	
		закрытый	1 Гц~100 МГц		50 мВ _{СКЗ} ~5 В _{размах}	
		вход (АС)	100~200 МГц		100 мВ _{СКЗ} ~5 В _{размах}	
Диапазон частот (измерение длит. импульса, коэфф. заполнения		1 Гц~10 МГц (50 мВ _{СКЗ} ~5 В _{размах})				
Настройки вход		связь входа		закрытый вход (AC) открытый вход (DC)		
(импеданс входа 1 МОм)		ФНЧ		включение/выключение		
Диапазон сигнала запуска		от минус 3 до плюс 1.8 В				

Общие технические характеристики

Дисплей					
Тип	3.5 дюймов, ЖК ТFT				
Число точек	320xRGBx240				
Количество цветов	24 бит				
Контрастность	350:1 (типовое)				
Яркость	300 нит (типовое)				
Питание					
Нопражонно	100~240 В _{СКЗ} , 45~66 Гц, КАТ II				
Напряжение	100~127 В _{СКЗ} , 45~440 Гц, КАТ II				
Потребляемая мощность	меньше 30 Вт				
Предохранитель	1.25 A, 250 B				
Условия внешней среды					
Пиадазон томпоратуры	эксплуатации: от плюс 10 до плюс 40 °C				
Диапазон температуры	хранения: от минус 20 до плюс 60 °C				
Диапазон относительной	не больше 90 % до плюс 35 °C				
влажности	не больше 60 %, от плюс 35 до плюс 40 °C				
Пределы высоты	эксплуатации: 3'000 м				
пределы высоты	без эксплуатации: 15'000 м				
Прочие					
	ширина: 229 мм				
Габариты	высота: 105 мм				
	длина: 281 мм				
Macca	без упаковки: 2.6 кг				
IVIACCA	с упаковкой: 3.4 кг				
IP защита	IP2X				
Интервал между калибровками	один год (рекомендуемый)				

ООО "ЮнионТЕСТ" оставляет за собой право любых изменений характеристик без уведомления.

Приложение В. Техническое обслуживание

- До обслуживания прибор должен быть выключен и отключен от электросети. Обслуживание должен выполнять квалифицированный персонал.
- Прибор следует хранить в сухом, хорошо вентилируемом помещении.
- Если прибор не будет использоваться длительное время, отключите кабель питания от электросети.
- Не допускается хранить или располагать измерительный прибор при длительном воздействии на ЖК-дисплей прямых солнечных лучей.

ВНИМАНИЕ!

Во избежание повреждения измерительного прибора не подвергайте его воздействию жидкостей, аэрозолей, или растворителей.

Чистка

Чистку прибора производите в соответствии с условиями эксплуатации. Чистка наружной поверхности прибора производится в следующей последовательности.

- 1. Удалите пыль с наружных частей прибора с помощью безворсовой ткани.
- 2. Используйте для чистки прибора слегка увлажненную водой мягкую ткань.

ВНИМАНИЕ!

Во избежание повреждения поверхностей прибора не допускается использование для их чистки любых абразивных, агрессивных или химических чистящих средств.

Приложение Г. Гарантийные обязательства и обслуживание

Гарантийные обязательства

ООО "ЮнионТЕСТ" предоставляет полное гарантийное обслуживание конечному пользователю и торговым посредникам. Согласно генеральному гарантийному обязательству ООО "ЮнионТЕСТ" в течение одного года со дня приобретения прибора при условии правильной эксплуатации его гарантирует отсутствие дефектов качества применяемых при изготовлении материалов или самого изготовления.

Данное гарантийное обязательство имеет силу только на территории страны приобретения и только в случае приобретения у официального представителя или дилера.

ООО "ЮнионТЕСТ" оставляет за собой право проверки претензий, связанных с гарантийным обязательством, в целях определения степени применимости настоящего гарантийного обязательства.

Данная гарантия не распространяется на плавкие предохранители и компоненты разового использования, а также на любые изделия или их части, отказ или повреждение которых вызван одной из следующих причин:

- 1. в результате небрежного использования или использования с отклонением от руководства по эксплуатации;
- 2. в результате неправильного ремонта или модификации лицами, не являющимися персоналом сервисных служб ООО "ЮнионТЕСТ":

- 3. в результате форс-мажорных обстоятельств, например, пожар, наводнение или иное стихийное бедствие:
- 4. в результате транспортировки, перемещения или падения после покупки прибора.

Гарантийное обслуживание

В случае необходимости обслуживания следует предоставить следующую информацию:

- 1. ваш адрес и информация для контакта;
- 2. описание проблемы;
- 3. описание конфигурации изделия;
- 4. код модели изделия;
- 5. серийный номер изделия (при наличии);
- 6. документы, подтверждающие покупку;
- 7. место приобретения изделия.

Пожалуйста, обратитесь с указанной выше информацией к дилеру или в ООО "ЮнионТЕСТ". Прибор, отправленный в ООО "ЮнионТЕСТ" или дилеру, без указанной выше информации будет возвращен клиенту.

Контактная информация

ООО "ЮнионТЕСТ"

Тел. +7 (499) 1748035, +7 9150554563

Факс.(499) 1748035

Адрес электронной почты: utest.ru@gmail.com

Веб-страница: www.utest.ru

По вопросам обращайтесь к дилеру или непосредственно в ООО "ЮнионТЕСТ".

RUV 1.2